Skip to main content

Advertisement

Log in

Radiosensitization by gold nanoparticles

  • Educational Series - Red Series
  • New Trends in Clinical Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Recent years brought increasing use of gold nano particles (GNP) as a model platform for interaction of irradiation and GNPs aiming radiosensitization. Endocytosis seems to be one of the major pathways for cellular uptake of GNPs. Internalization mechanism of GNPs is likely receptor-mediated endocytosis, influenced by GNP size, shape, its coating and surface charging. Many showed that DNA damage can occur as a consequence of metal-enhanced production of low energy electrons, Auger electrons and alike. Kilovoltage radiotherapy (RT) carries significantly higher dose enhancement factor (DEF) that is observed with megavoltage irradiations, the latter usually been at the order of 1.1–1.2. Higher gold concentrations seem to carry higher risk of toxicity, while with lower concentrations the DEF can be reduced. Adding a chemotherapeutic agent could increase level of enhancement. Clinical trials are eagerly awaited with a promise of gaining more knowledge deemed necessary for more successful transition to widespread clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM International, E-2456-06 (2006) Terminology for nanotechnology. ASTM International, West Conshohocken

    Google Scholar 

  2. Turkevich J, Hiller J, Stevenson PC (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  3. Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782

    Article  PubMed  CAS  Google Scholar 

  4. Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility mod gold nanoparticles and their endocytic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654

    Article  PubMed  CAS  Google Scholar 

  5. Hainfeld JF, Dilmanian FA, Slatkin DN et al (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985

    Article  PubMed  CAS  Google Scholar 

  6. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  PubMed  CAS  Google Scholar 

  7. Kong T, Zeng J, Wang X et al (2008) Enhancement of radiation cytotoxicity in breast-cancer cells by localized attachment of gold nanoparticles. Small 4:1537–1543

    Article  PubMed  CAS  Google Scholar 

  8. Rahman WN, Bishara N, Ackerly T et al (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomed Nanotechnol Biol Med 5:136–142

    Article  CAS  Google Scholar 

  9. Butterworth KT, Coulter JA, Jain S et al (2010) Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy. Nanotechnology 21:295101

    Google Scholar 

  10. Chithrani BD, Ghazani AA, Chen WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    Article  PubMed  CAS  Google Scholar 

  11. Chithrani BD, Stewart J, Allen C et al (2009) Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 5:118–127

    Article  PubMed  CAS  Google Scholar 

  12. Mukherjee S, Ghosh RN, Maxfield FR (1997) Endocytosis. Physiol Rev 77:759–803

    PubMed  CAS  Google Scholar 

  13. Jin H, Heller DA, Strano MS et al (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano 3:149–158

    Article  PubMed  CAS  Google Scholar 

  14. Xu X-HN, Brownlow WJ, Kyriacou SV et al (2004) Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochem 43:10400–10413

    Article  CAS  Google Scholar 

  15. Arnida, Malugin A, Ghandehari H (2009) Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 30:212–217

    Google Scholar 

  16. Cartiera MS, Johnson KM, Rajendran V et al (2009) The uptake and intracellular fate of PLGA nanoparticles in epithelial cells. Biomaterials 30:2790–2798

    Article  PubMed  CAS  Google Scholar 

  17. Aoyama Y, Kanamori T, Nakai T et al (2003) Artificial viruses and their application to gene delivery. Size-controlled gene coating with glycocluster nanoparticles. J Am Chem Soc 125:3455–3457

    Article  PubMed  CAS  Google Scholar 

  18. Nakai T, Kanemori T, Sando S et al (2003) Remarkably size-regulated cell invasions by artificial viruses. Saccharide-dependent self-aggregation of glycoviruses and its consequences in glycoviral gene delivery. J Am Chem Soc 125:8465–8475

    Article  PubMed  CAS  Google Scholar 

  19. Osaki F, Kanemori T, Sando S et al (2004) A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region. J Am Chem Soc 126:6520–6521

    Article  PubMed  CAS  Google Scholar 

  20. Gao H, Shi W, Freund LB (2005) Mechanics of receptor-mediated endocytosis. Proc Natl Acad Sci USA 102:9469–9474

    Article  PubMed  CAS  Google Scholar 

  21. Shi W, Wang J, Fan X, Gao H (2008) Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: implications for uptake of nanoparticles in animal cells. Phy Rev E 78:061914–061925

    Article  Google Scholar 

  22. Chithrani DB (2010) Intracellular uptake, transport, and processing of gold nanostructures. Mol Membr Biol 27:299–311

    Article  PubMed  CAS  Google Scholar 

  23. Cho EC, Xie J, Wurm PA et al (2009) Understanding the role of surface charge sin cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant. Nano Lett 9:1080–1084

    Article  PubMed  CAS  Google Scholar 

  24. Vertegel AS, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807

    Article  PubMed  CAS  Google Scholar 

  25. Aubin-Tam M-E, Hamad-Schifferli K (2005) Gold nanoparticle—cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure. Langmuir 21:12080–12084

    Article  PubMed  CAS  Google Scholar 

  26. Yang Z, Leon J, Martin M et al (2009) Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology 20:165101

    Article  PubMed  Google Scholar 

  27. Ishida O, Maruyama K, Sasaki K et al (1999) Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 190:49–56

    Article  PubMed  CAS  Google Scholar 

  28. Perrault SD, Walkey C, Jennings T et al (2009) Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9:1909–1915

    Article  PubMed  CAS  Google Scholar 

  29. Chen J, Irudayaraj J (2009) Quantitative investigation of compartmentalized dynamics of erbB2 targeting gold nanorods in live cells by single molecule spectroscopy. ACS Nano 3:4071–4079

    Article  PubMed  CAS  Google Scholar 

  30. Lukacs GL, Haggie P, Seksek O et al (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629

    Article  PubMed  CAS  Google Scholar 

  31. Goldstein JL, Anderson RGW, Brown MS (1979) Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279:679–685

    Article  PubMed  CAS  Google Scholar 

  32. See L, Free P, Cesbron Y et al (2009) Cathepsin L digestion of nanobioconjugates upon endocytosis. ACS Nano 3:2461–2468

    Article  PubMed  CAS  Google Scholar 

  33. Taylor U, Klein S, Petersen S et al (2010) Nonendosomal cellular uptake of ligand-free, positively charged nanoparticles. Cytometry A 77A:439–446

    CAS  Google Scholar 

  34. Panyam J, Zhou WZ, Prabhs S et al (2002) Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 16:1217–1226

    Article  PubMed  CAS  Google Scholar 

  35. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550

    Article  PubMed  CAS  Google Scholar 

  36. Nativo P, Prior IA, Brust M (2008) Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2:1639–1644

    Article  PubMed  CAS  Google Scholar 

  37. Tkachenko AG, Xie H, Coleman D et al (2003) Multifunctional gold nanoparticle-peptide complexes for nuclear targeting. J Am Chem Soc 125:4700–4701

    Article  PubMed  CAS  Google Scholar 

  38. Tkachenko A, Xie H, Liu Y et al (2004) Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem 15:482–490

    Article  CAS  Google Scholar 

  39. Connor EE, Mwamuka J, Gole A et al (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  PubMed  CAS  Google Scholar 

  40. Rayavarapu RJ, Petersen W, Ungureanu C et al (2007) Synthesis and bioconjugation of gold nanoparticles as potential probes for light-based imaging techniques. In J Biomed Imag 2007:1–10

    Article  Google Scholar 

  41. Berry CC, de la Fuente JM, Mullin M et al (2007) Nuclear localization of HIV-1 tat functionalized gold nanoparticles. IEEE Trans Nano Biosci 6:262–269

    Article  CAS  Google Scholar 

  42. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 41:189–207

    Article  PubMed  CAS  Google Scholar 

  43. Maki S, Konno T, Maeda H (1985) Image enhancement in computerised tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium. Cancer 56:751–757

    Article  PubMed  CAS  Google Scholar 

  44. Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Res 63:136–151

    Article  CAS  Google Scholar 

  45. Kaul G, Amiji M (2002) Long-circulating poly(ethylene glycol)-modified gelating nanoparticles for intracellular delivery. Pharm Res 19:1061–1067

    Article  PubMed  CAS  Google Scholar 

  46. Cho SH (2005) Estimation of tumor dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:N163–N173

    Article  PubMed  Google Scholar 

  47. Roeske JC, Nunez L, Hoggarth M et al (2007) Characterization of the theoretical dose enhancement from nanoparticles. Technol Cancer Res Treat 6:395–401

    PubMed  Google Scholar 

  48. McMahon SJ, Mendenhall MH, Jain S et al (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651

    Article  PubMed  Google Scholar 

  49. Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54:4889–4905

    Article  PubMed  CAS  Google Scholar 

  50. Carter JD, Cheng NN, Qu Y et al (2007) Nanoscale energy deposition by X-ray absorbing nanostructures. J Phys Chem 111:11622–11625

    CAS  Google Scholar 

  51. Boudaiffa B, Cloutier P, Hunting DJ et al (2000) Resonant formation of DNA strand breaks by low-energy (3–20 eV) electrons. [Report]. Science 287:1658–1660

    Article  PubMed  CAS  Google Scholar 

  52. Roa W, Zhang X, Guo L et al (2009) Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of cell cycle. Nanotechnology 20:375101

    Article  PubMed  Google Scholar 

  53. Chang M, Shiau A, Chen Y et al (2008) Increased apoptotic potential and dose-enhancing effects of gold nanoparticles in combination with single-dose clinical electron beams on tumor bearing mice. Cancer Sci 99:1479–1484

    Article  PubMed  CAS  Google Scholar 

  54. Chithrani DB, Jelveh S, Jalali F et al (2010) Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res 173:719–728

    Article  PubMed  CAS  Google Scholar 

  55. Liu C-J, Wang C-H, Chien C–C et al (2008) Enhanced X-irradiation-induced cancer cell damage by gold nanoparticles treated by anew synthesis method of polyethylene glycol modification. Nanotechnology 19:295104–295109

    Article  PubMed  Google Scholar 

  56. Hainfeld JF, Dilmanian FA, Zhong Z et al (2010) Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma. Phys Med Biol 55:3045–3059

    Article  PubMed  CAS  Google Scholar 

  57. Kirschenbaum J, Riesz P (2009) Enhancement of 5-aminolevulinic acid-induced oxidative stress on two cancer cell lines by gold nanoparticles. Free Radic Res 43:1214–1224

    Article  PubMed  Google Scholar 

  58. Kassis AI (2004) The amazing world of Auger electrons. Int J Radiat Biol 11–12:789–803

    Article  Google Scholar 

  59. Sanche L (2005) Low-energy electron-driven damage in biomolecules. Eur Phys J D 35:367–390

    Article  CAS  Google Scholar 

  60. Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  61. Leung MKK, Chow JCL, Chithrani BD et al (2011) Irradiation of gold nanoparticles by X-rays: Monte Carlo simulation of dose enhancements and the spatial properties of the secondary electron production. Med Phys 38:624–631

    Article  PubMed  CAS  Google Scholar 

  62. Jain S, Coulter JA, Hounsell AR et al (2011) Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int J Radiat Oncol Biol Phys 79:531–539

    Article  PubMed  CAS  Google Scholar 

  63. Patra HK, Banerjee S, Chaudhuri U et al (2007) Cell selective response to gold nanoparticles. Nanomedicine 3:111–119

    Article  PubMed  CAS  Google Scholar 

  64. Cho WS, Cho M, Jeong J et al (2009) Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 236:16–24

    Article  PubMed  CAS  Google Scholar 

  65. McMahon SJ, Hyland WB, Muir MF et al (2011) Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles. Sci Rep 1:18

    Article  PubMed  Google Scholar 

  66. Lechtman E, Chattopadhyay N, Cai Z et al (2011) Implications on clinical scenario of gold nanoparticle radiosensitization in regards to photon energy, nanoparticle size, concentration and location. Phys Med Biol 56:4631–4647

    Article  PubMed  CAS  Google Scholar 

  67. Brun E, Sanche L, Sicard-Roselli C (2009) Parameters governing gold nanoparticles X-ray sensitization of DNA in solution. Colloids Surf B 72:128–134

    Article  CAS  Google Scholar 

  68. Rahman WN, Wong CJ, Ackerly T et al (2012) Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams. Australas Phys Eng Sci Med 35:301–309

    Article  PubMed  Google Scholar 

  69. Zhang C, Huang P, Bao L et al (2011) Enhancement of gastric cell radiation sensitivity by chitosan-modified gold nanoparticles. J Nanosci Nanotechnol 11:9528–9535

    Article  PubMed  CAS  Google Scholar 

  70. Berbeco RI, Ngwa W, Makrigiorgios GM (2011) Localized dose enhancement to tumor blood vessel endothelial cells via megavoltage X-rays and targeted nanoparticles: new potential for external beam radiotherapy. Int J Radiat Oncol Biol Phys 81:270–276

    Article  PubMed  Google Scholar 

  71. Pan Y, Neuss S, Leifert A et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3:1941–1949

    Article  PubMed  CAS  Google Scholar 

  72. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  PubMed  CAS  Google Scholar 

  73. Herold DM, Das IJ, Stobe CC et al (2000) Gold microspheres: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364

    Article  PubMed  CAS  Google Scholar 

  74. Hainfeld JF, Foley CF, Shrivastava SC et al (1990) Radioactive gold cluster immunoconjugates: potential agents for cancer therapy. Nucl Med Biol 17:287–294

    CAS  Google Scholar 

  75. Niidome T, Nakashima H, Takahashi Y et al (2004) Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem Commun 17:1978–1979

    Article  Google Scholar 

  76. Dvorak HF, Nagy JA, Dvorak JT et al (1988) Identification and characterisation of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109

    PubMed  CAS  Google Scholar 

  77. Gratton SEA, Ropp PA, Polhaus PD et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci 105:11613–11618

    Article  PubMed  CAS  Google Scholar 

  78. Champion JA, Mitragotri S (2009) Shape induced inhibition of phagocytosis of polymer particles. Pharm Res 26:244–249

    Article  PubMed  CAS  Google Scholar 

  79. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:662–667

    Article  Google Scholar 

  80. Cho EC, Au L, Zhang Q et al (2009) The effects of size, shape, and surface functional group of gold nanoparticles on their adsorption and internalization by cells. Small 6:517–522

    Article  Google Scholar 

  81. Sayes CM, Reed KL, Warheit DB (2007) Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 97:163–180

    Article  PubMed  CAS  Google Scholar 

  82. Goodman CM, McCucker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  PubMed  CAS  Google Scholar 

  83. Pernodet N, Fang X, Sun Y et al (2006) Adverse effects of citrate/gold nanoparticles on human dermal fibroblasts. Small 2:766–773

    Article  PubMed  CAS  Google Scholar 

  84. Murphy CJ, Gole AM, Stone JW et al (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730

    Article  PubMed  CAS  Google Scholar 

  85. Male KB, Lachance B, Hrapovic S et al (2008) Assessment of cytotoxicity of quantum dots and gold nanoparticles using cell-based impedance spectroscopy. Anal Chem 80:5487–5493

    Article  PubMed  CAS  Google Scholar 

  86. Zhang X-D, Wu HY, Wu D et al (2010) Toxicologic effects of gold nanoparticles in vivo by different administration routes. Int J Nanomed 5:771–781

    Article  CAS  Google Scholar 

  87. de Jong WH, Hagens WI, Krystek P et al (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    Article  PubMed  Google Scholar 

  88. Sonavane G, Tomoda K, Makino K (2008) Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 66:274–280

    Article  PubMed  CAS  Google Scholar 

  89. Chen YS, Hung YC, Liau I et al (2009) Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett 4:858–864

    Article  PubMed  CAS  Google Scholar 

  90. Cho WS, Kim S, Han BS et al (2009) Comparison of gene expression profiles in mice liver following intravenous injection of 4 and 100 nm-sized PEG-coated gold nanoparticles. Toxicol Lett 191:96–102

    Article  PubMed  CAS  Google Scholar 

  91. Semmler-Behnke M, Kreyling WG, Lipka J et al (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4:2108–2111

    Article  PubMed  CAS  Google Scholar 

  92. Lipka J, Semmler-Behnke M, Sperling RA et al (2010) Biodistribution of PED-modified gold nanoparticles following intrathecal instillation and intravenous injection. Biomaterials 31:6574–6581

    Article  PubMed  CAS  Google Scholar 

  93. Cho WS, Cho M, Jeong J et al (2010) Size-dependent tissue-kinetics of PEG-coated gold nanoparticles. Toxicol Appl Pharmacol 245:116–123

    Article  PubMed  CAS  Google Scholar 

  94. Balasubramaniam SK, Jittiwat J, Manikandan J et al (2010) Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31:2034–2042

    Article  Google Scholar 

  95. Balogh L, Nigavekar SS, Nair BM et al (2007) Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. Nanomedicine 3:281–296

    Article  PubMed  CAS  Google Scholar 

  96. Zhang X-D, Wu D, Shen X et al (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408–6419

    Article  PubMed  CAS  Google Scholar 

  97. Zhang X-D, Wu D, Shen X et al (2011) Size-dependent toxicity of PEG-coated gold nanoparticles. Int J Nanomed 6:2071–2081

    Article  CAS  Google Scholar 

  98. Zhang X-D, Wu D, Shen X et al (2012) In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials 33:4628–4638

    Article  PubMed  CAS  Google Scholar 

  99. Zheng Y, Hunting D, Ayotte P et al (2008) Role of secondary low energy electrons in the concomitant chemoradiation therapy of cancer. Phys Rev Lett 100:198101–198104

    Article  PubMed  Google Scholar 

  100. Pimblott SM, LaVerne JA (2007) Production of low energy electrons by ionizing irradiation. Radiat Phys Chem 76:1244–1249

    Article  CAS  Google Scholar 

  101. Zheng L, Sanche L (2009) Gold nanoparticles enhance DNA damage induced by anti-cancer drugs and irradiation. Radiat Res 172:114–119

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by Ministry of Education and Science in Serbia, ON174028 and III41007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jeremic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeremic, B., Aguerri, A.R. & Filipovic, N. Radiosensitization by gold nanoparticles. Clin Transl Oncol 15, 593–601 (2013). https://doi.org/10.1007/s12094-013-1003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-013-1003-7

Keywords

Navigation