Skip to main content

Advertisement

Log in

Resistance mechanisms of tumour cells to EGFR inhibitors

  • Educational Series
  • Molecular Targets in Oncology
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

In spite of the overexpression and efficient inhibition of epidermal growth factor receptor (EGFR), resistance to EGFR inhibitors, monoclonal antibodies and tyrosine kinase inhibitors may occur. Understanding the molecular mechanisms affecting cancer cell sensitivity or resistance to EGFR inhibitors may be of help in deciding on treatment and in new translational studies. This review will focus on the most relevant mechanisms contributing to the acquisition of sensitivity/resistance to EGFR inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogdan S, Klambt C (2001) Epidermal growth factor receptor signaling. Curr Biol 11:292–295

    Article  Google Scholar 

  2. Hirsch FR, Witta S (2005) Biomarkers for prediction of sensitivity to EGFR inhibitors in nonsmall cell lung cancer. Curr Opin Oncol 17:118–122

    Article  PubMed  CAS  Google Scholar 

  3. Wakeling AE, Guy SP, Woodburn JR et al (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62:5749–5754

    PubMed  CAS  Google Scholar 

  4. Liu B, Fang M, Lu Y et al (2001) Fibroblast growth factor and insulin-like growth factor differentially modulate the apoptosis and G1 arrest induced by anti-epidermal growth factor receptor monoclonal antibody. Oncogene 20:1913–1922

    Article  PubMed  CAS  Google Scholar 

  5. Motoyama AB, Hynes NE, Lane HA (2002) The efficacy of ErbB receptor-targeted anticancer therapeutics is influenced by the availability of epidermal growth factor-related peptides. Cancer Res. 62:3151–3158

    PubMed  CAS  Google Scholar 

  6. Khambata-Ford S, Garrett CR, Meropol NJ et al (2007) Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol. 25:3230–3237

    Article  PubMed  CAS  Google Scholar 

  7. Guix M, Faber AC, Wang SE et al (2008) Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGFbinding proteins. J Clin Invest 118:2609–2619

    PubMed  CAS  Google Scholar 

  8. Learn CA, Hartzell TL, Wikstrand CJ et al (2004) Resistance to tyrosine kinase inhibition by mutant epidermal growth factor receptor variant III contributes to the neoplastic phenotype of glioblastoma multiforme. Clin Cancer Res 10:3216–3224

    Article  PubMed  CAS  Google Scholar 

  9. Li B, Yuan M, Kim IA et al (2004) Mutant epidermal growth factor receptor displays increased signalling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 23:4594–4602

    Article  PubMed  CAS  Google Scholar 

  10. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of nonsmall-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  11. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  12. Shigematsu H, Lin L, Takahashi T et al (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97:339–346

    Article  PubMed  CAS  Google Scholar 

  13. Han SW, Kim TY, Hwang PG et al (2005) Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol 23:2493–2501

    Article  PubMed  CAS  Google Scholar 

  14. Mitsudomi T, Kosaka T, Endoh H et al (2005) Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 23:2513–2520

    Article  PubMed  CAS  Google Scholar 

  15. Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoSMed 2:e73

    Google Scholar 

  16. Balak MN, Gong Y, Riely GJ et al (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12:6494–6501

    Article  PubMed  CAS  Google Scholar 

  17. Schubbert S (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308

    Article  PubMed  CAS  Google Scholar 

  18. Forbes S, Clements J, Dawson E et al (2006) Cosmic. Br J Cancer 94:318–322

    Article  PubMed  CAS  Google Scholar 

  19. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  20. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  PubMed  CAS  Google Scholar 

  21. Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F et al (2007) Oncogenic activation of the RAS/ RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies. Cancer Res. 67:2643–2648

    Article  PubMed  CAS  Google Scholar 

  22. Van Cutsem E, Lang I, D’haens G et al (2008) KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer treated with FOLFIRI with or without cetuximab: the CRYSTAL experience. J Clin Oncol 26[Suppl]:5s

    Google Scholar 

  23. Pao W, Wang TY, Riely GJ et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR Kinase Domain. PLoS Med 2:e17

    Article  PubMed  CAS  Google Scholar 

  24. Eberhard DA, Johnson BE, Amler LC et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23:5900–5999

    Article  PubMed  CAS  Google Scholar 

  25. Tsao MS, Sakurada A, Cutz JC et al (2005) Erlotinib in lung cancer: molecular and clinical predictors of outcome. N Engl J Med 353:133–144

    Article  PubMed  CAS  Google Scholar 

  26. Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712

    Article  PubMed  CAS  Google Scholar 

  27. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    Article  PubMed  CAS  Google Scholar 

  28. Bean J, Brennan C, Shih JY et al (2007) MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci USA 104:20932–20937

    Article  PubMed  CAS  Google Scholar 

  29. Ma PC, Maulik G, Christensen J et al (2003) c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 22:309–332

    Article  PubMed  CAS  Google Scholar 

  30. Birchmeier C, Birchmeier W, Gherardi E et al (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    Article  PubMed  CAS  Google Scholar 

  31. Lutterbach B, Zeng Q, Davis LJ et al (2007) Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Res 67:2081–2088

    Article  PubMed  CAS  Google Scholar 

  32. Sell C, Rubini M, Rubin R et al (1993) Simian virus 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type 1 insulin-like growth factor receptor. Proc Natl Acad Sci USA 90:11217–11221

    Article  PubMed  CAS  Google Scholar 

  33. O’Connor R, Kauffmann-Zeh A, Liu Y et al (1997) Identification of domains of the insulinlike growth factor I receptor that are required for protection from apoptosis. Mol Cell Biol 17:427–435

    PubMed  Google Scholar 

  34. Baserga R (1997) The price of independence. Exp Cell Res 236:1–3

    Article  PubMed  CAS  Google Scholar 

  35. Jones HE, Goddard L, Gee JM et al (2004) Insulin-like growth factor-I receptor signalling and acquired resistance o gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 11:793–814

    Article  PubMed  CAS  Google Scholar 

  36. Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signaling. Cancer Res 62:200–207

    PubMed  CAS  Google Scholar 

  37. Morgillo F, Woo JK, Kim ES et al (2006) Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer Res 15:395–399

    Google Scholar 

  38. Christensen JG, Schreck RE, Chan E et al (2001) High levels of HER-2 expression alter the ability of epidermal growth factor receptor (EGFR) family tyrosine kinase inhibitors to inhibit EGFR phosphorylation in vivo. Clin Cancer Res 7:4230–4423

    PubMed  CAS  Google Scholar 

  39. Karunagaran D, Tzahar E, Beerli RR et al (1996) ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J 15:254

    PubMed  CAS  Google Scholar 

  40. Xia W, Lau YK, Zhang HZ et al (1999) Combination of EGFR, HER-2/neu, and HER-3 is a stronger predictor for the outcome of oral squamous cell carcinoma than any individual family members. Clin Cancer Res 5:4164–4174

    PubMed  CAS  Google Scholar 

  41. Tateishi M, Ishida T, Kohdono S (1994) Prognostic influence of the co-expression of epidermal growth factor receptor and c-erbB-2 protein in human lung adenocarcinoma. Surg Oncol 3:109–113

    Article  PubMed  CAS  Google Scholar 

  42. Qian X, Dougall WC, Hellman ME (1994) Kinase-deficient neu proteins suppress epidermal growth factor receptor function and abolish cell transformation. Oncogene 9:1507–1514

    PubMed  CAS  Google Scholar 

  43. Graus-Porta D, Beerli RR, Hynes NE (1995) Single-chain antibody-mediated intracellular retention of ErbB-2 impairs Neu differentiation factor and epidermal growth factor signaling. Mol Cell Biol 15:1182–1191

    PubMed  CAS  Google Scholar 

  44. Konecny GE, Pegram MD, Venkatesan N et al (2006) Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res 66:1630–1639

    Article  PubMed  CAS  Google Scholar 

  45. Ciardiello F, Bianco R, Caputo R et al (2004) Antitumor activity of ZD6474, a vascular endothelial growth factor receptor tyrosine kinase inhibitor, in human cancer cells with acquired resistance to Anti-epidermal growth factor receptor therapy. Clin Cancer Res 10:784–793

    Article  PubMed  CAS  Google Scholar 

  46. Milanini J, Vinals F, Pouyssegur J et al (1998) p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 273:18165–18172

    Article  PubMed  CAS  Google Scholar 

  47. Ciardiello F, Bianco R, Damiano V et al (2000) Antiangiogenic and antitumor activity of antiepidermal growth factor receptor C225 monoclonal antibody in combination with vascular endothelial growth factor antisense oligonucleotide in human GEO colon cancer cells. Clin Cancer Res 6:3739–3747

    PubMed  CAS  Google Scholar 

  48. Herbst RS, Johnson DH, Mininberg E et al (2005) Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/ epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent nonsmall-cell lung cancer. J Clin Oncol 23:2544–2555

    Article  PubMed  CAS  Google Scholar 

  49. Hainsworth JD, Sosman JA, Spigel DR et al (2005) Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol 23:7889–7896

    Article  PubMed  CAS  Google Scholar 

  50. Natale RB, Bodkin D, Govindan R et al (2006) ZD6474 versus gefitinib in patients with advanced NSCLC: Final results from a two-part, double-blind, randomized phase II trial. Proc Am Soc Clin Oncol 18S:7000

    Google Scholar 

  51. Heymach JV, Johnson BE, Prager D et al (2006) A phase II trial of ZD6474 plus docetaxel in patients with previously treated NSCLC: follow-up results. Proc Am Soc Clin Oncol 18S:7016

    Google Scholar 

  52. Bianco R, Caputo R, Caputo R et al (2008) Vascular endothelial growth factor receptor-1 contributes to resistance to anti epidermal growth factor receptor drugs in human cancer cells. Clin Cancer Res 4:5069–5080

    Article  Google Scholar 

  53. Janmaat ML, Kruyt FA, Rodriguez JA et al (2003) Response to epidermal growth factor receptor inhibitors in nonsmall cell lung cancer cells: limited antiproliferative effects and absence of apoptosis associated with persistent activity of extracellular signal-regulated kinase or Akt kinase pathways. Clin Cancer Res 9:2316–2326

    PubMed  CAS  Google Scholar 

  54. Magne N, Fischel JL, Dubreuil A et al (2006) Influence of epidermal growth factor receptor (EGFR), p53 and intrinsic MAP kinase pathway status of tumour cells on the antiproliferative effect of ZD1839 (“Iressa”). Br J Cancer 86:1518–1523

    Article  Google Scholar 

  55. Bianco R, Shin I, Ritter CA et al (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22:2812–2822

    Article  PubMed  CAS  Google Scholar 

  56. Stein RC (2001) Prospects for phosphoinositide 3-kinase inhibition as a cancer treatment. Endocr Relat Cancer 8:237–248

    Article  PubMed  CAS  Google Scholar 

  57. Humar R, Kiefer FN, Berns H et al (2002) Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J 16:771–780

    Article  PubMed  CAS  Google Scholar 

  58. Neshat M S, Mellinghoff IK, Tran C et al (2001) Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci U S A 98:10314–10319

    Article  PubMed  CAS  Google Scholar 

  59. Guba M, von Breitenbuch P, Steinbauer M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135

    Article  PubMed  CAS  Google Scholar 

  60. Rao RD, Mladek AC, Lamont JD et al (2005) Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. Neoplasia 7:921–929

    Article  PubMed  CAS  Google Scholar 

  61. Di Cosimo S, Matar P, Rojo F et al (2004) Schedule-dependent effects of the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor gefitinib in combination with the mammalian target of rapamycin (mTOR) inhibitor everolimus (RAD001). Proc Am Soc Clin Oncol 14S:3074

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floriana Morgillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgillo, F., Cantile, F., Fasano, M. et al. Resistance mechanisms of tumour cells to EGFR inhibitors. Clin Transl Oncol 11, 270–275 (2009). https://doi.org/10.1007/s12094-009-0354-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0354-6

Keywords

Navigation