Skip to main content
Log in

The Sensitivity Modifying Activity of Nerolidol and α-Bisabolol Against Trichophyton spp

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Trichophyton spp. is one of the main causative agents of dermatophytosis such as tinea ungium and tinea pedis. Resistance to antifungal drugs is a significant clinical problem in dermatophytosis. The main molecular mechanism of antifungal resistance to conventional therapy in dermatophytes is the expression of efflux pumps. Efforts aimed at improving the efficacy of current antifungals such as griseofulvin are relevant. Given this, sesquiterpenes such as α-bisabolol and nerolidol found in essential oils represent promissing alternatives. Griseofulvin sensitivity modulation activity in T. rubrum, T. interdigitale H6, and T. interdigitale Δmdr2 (mutant strain of T. interdigitale) promoted by α-bisabolol and nerolidol were investigated. The minimum inhibitory concentration (MIC) of the test drugs were determined by microdilution. Subsequently, the effect of the drugs tested on plasma membrane functionality (K+ release) was analyzed. The MIC of griseofulvin was determined at sub-inhibitory sesquiterpene concentrations (modulation assay). An association study was performed with griseofulvin and sesquiterpenes (checkerboard). α-bisabolol was more potent than nerolidol; presenting lower MIC values. All of the fungi were sensitive to griseofulvin, starting at 8 µg/mL. With the exception of griseofulvin, all of the test drugs increased K+ release (p < 0.05). Nerolidol modulated the sensitivity of all strains to griseofulvin; α-bisabolol sensitivity modulation was limited to T. interdigitale H6 and T. interdigitale Δmdr2. In association with griseofulvin: nerolidol and α-bisabolol respectively presented synergism and additivity. Finally, the results of our study suggest using α-bisabolol and nerolidol compounds as potential antifungal agents and griseofulvin sensitivity modulators for Trichophyton spp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahmad A, Khan A, Manzoor N (2013) Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur J Pharm Sci 48:80–86. https://doi.org/10.1016/j.ejps.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  2. Boral H, Metin B, Dogen A, Seyedmousavi S, Ilkit M (2018) Overview of selected virulence attributes in Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Exophiala dermatitidis. Fungal Genet Biol 111:92–107. https://doi.org/10.1016/j.fgb.2017.10.008

    Article  PubMed  Google Scholar 

  3. Chan W, Tan LT, Chan K, Lee L, Goh B (2016) Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules. 21:529. https://doi.org/10.3390/molecules21050529

    Article  Google Scholar 

  4. Clinical and Laboratory Standards Institute (2008) Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard—second edition M38-A2. Pennsylvania, United States of America

  5. Correa-Royero J, Tangarife V, Durán C, Stashenko E, Mesa-Arango A (2010) In vitro antifungal activity and cytotoxic effect of essential oils and extracts of medicinal and aromatic plants against Candida krusei and Aspergillus fumigatus. Rev Bras Farmacogn 20:734–741. https://doi.org/10.1590/S0102-695X2010005000021

    Article  CAS  Google Scholar 

  6. Coutinho HD, Costa JGM, Lima EO, Silva VSF, Siqueira-Júnior JP (2008) Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemother 54:328–330. https://doi.org/10.1159/000151267

    Article  CAS  Google Scholar 

  7. Lage TCA, Montanari RM, Fernandes AS, Monteiro CMO, Senra TOS, Zeringota V, Matos RS, Daemon E (2015) Chemical composition and acaricidal activity of the essential oil of Baccharis dracunculifolia de Candole (1836) and its constituents nerolidol and limonene on larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Exp Parasitol 148:24–29. https://doi.org/10.1016/j.exppara.2014.10.011

    Article  CAS  Google Scholar 

  8. Fachin AL, Ferreira-Nozawa M, Maccheroni-Jr W, Martinez-Rossi N (2006) Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol 55:1093–1099. https://doi.org/10.1099/jmm.0.46522-0

    Article  CAS  PubMed  Google Scholar 

  9. Fajinmi OO, Kulkarni MG, Benická S, Zeljkovic SC, Dolezal K, Tarkowski P, Finnie JF, Staden JV (2018) Antifungal activity of the volatiles of Agathosma betulina and Coleonema album commercial essential oil and their effect on the morphology of fungal strains Trichophyton rubrum and T. mentagrophytes. South Afr J Bot 122:492–497. https://doi.org/10.1016/j.sajb.2018.03.003Get

    Article  Google Scholar 

  10. Forrer M, Kulik EM, Filippi A, Waltimo T (2013) The antimicrobial activity of alpha-bisabolol and tea tree oil against Solobacterium moorei, a gram-positive bacterium associated With halitosis. Arch Oral Biol 58:10–16. https://doi.org/10.1016/j.archoralbio.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  11. Fuentefria AM, Pippi B, Lana DFD, Donato KK, Andrade SF (2017) Antifungals: an insight into new strategies to combat antifungal resistance. Lett Appl Microbiol 66:2–13. https://doi.org/10.1111/lam.12820

    Article  CAS  PubMed  Google Scholar 

  12. Galgóczy L, Bácsi A, Homa M, Virágh M, Papp T, Vágvölgyi C (2011) In vitro antifungal activity of phenothiazines and their combination with amphotericin B against different Candida species. Mycoses 54:737–743. https://doi.org/10.1111/j.1439-0507.2010.02010.x

    Article  CAS  Google Scholar 

  13. Ghelardi E, Celandroni F, Gueye SA, Salvetti S, Senesi S, Bulgheroni A, Mailland F (2014) Potential of Ergosterol synthesis inhibitors to cause resistance or cross-resistance in Trichophyton rubrum. Antimicrob Agents Chemother 58:2825–2829. https://doi.org/10.1128/AAC.02382-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kapp E, Malan SF, Joubert J, Sampson SL (2018) Small molecule efflux pump inhibitors in Mycobacterium tuberculosis: a rational drug design perspective. Mini Rev Med Chem 18:72–86. https://doi.org/10.2174/1389557517666170510105506

    Article  CAS  PubMed  Google Scholar 

  15. Lewis RE, Diekema DJ, Messer SA, Pfaller MA, Klepser ME (2002) Comparison of Etest, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J Antimicrob Chemother 49:345–351. https://doi.org/10.1093/jac/49.2.345

    Article  CAS  PubMed  Google Scholar 

  16. Lopes G, Pinto E, Salgueiro L (2017) Natural Products: an alternative to conventional therapy for dermatophytosis? Mycopathol 182:143–167. https://doi.org/10.1007/s11046-016-0081-9

    Article  CAS  Google Scholar 

  17. Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes EV, Quaresemin NR, Martins MP, Lopes L, Rossi A (2018) Dermatophyte resistance to antifungal drugs: mechanisms and prospectus. Front Microbiol 9:1108. https://doi.org/10.3389/fmicb.2018.01108

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meireles ALP, Costa MS, Rocha KAS, Gusevskaya EV (2015) Heteropoly acid catalyzed cyclization of nerolidol and farnesol: synthesis of α-bisabolol. Appl Catal A 502:271–275. https://doi.org/10.1016/j.apcata.2015.06.022

    Article  CAS  Google Scholar 

  19. Park MJ, Gwak KS, Yang I, Kim KW, Jeung EB, Chang JW, Choi IG (2009) Effect of citral, eugenol, nerolidol and α-terpineol on the ultrastructural changes of Trichophyton mentagrophytes. Fitoterapia 80:290–296. https://doi.org/10.1016/j.fitote.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  20. Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, Louw GE (2015) Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother 71:17–26. https://doi.org/10.1093/jac/dkv316

    Article  CAS  PubMed  Google Scholar 

  21. Raut JS, Karuppayil SM (2014) A status review on the medicinal properties of essential oils. Ind Crops Prod 62:250–264. https://doi.org/10.1016/j.indcrop.2014.05.055

    Article  CAS  Google Scholar 

  22. Reuk-ngam N, Chimnoi N, Khunnawutmanotham N, Techasakul S (2014) Antimicrobial activity of coronarin D and its synergistic potential with antibiotics. BioMed Res In 2014:1–8. https://doi.org/10.1155/2014/581985

    Article  Google Scholar 

  23. Romagnoli C, Baldisserotto A, Malisardi G, Vicentini CB, Mares D, Andreotti E, Vertuani S, Manfredini S (2015) A multi-target approach toward the development of novel candidates for antidermatophytic activity: ultrastructural evidence on α-bisabolol-Treated Microsporum gypseum. Molecules 20:11765–11776. https://doi.org/10.3390/molecules200711765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rottini MM, Amaral ACF, Ferreira JLP, Silva JRA, Taniwaki NN, Souza CSF, d’Escoffier LN, Almeida-Souza F, Hardoim DJ, Costa SCG, Calabrese KS (2015) In vitro evaluation of (–) α-bisabolol as a promising agent against Leishmania amazonensis. Exp Parasitol 148:66–72. https://doi.org/10.1016/j.exppara.2014.10.001

    Article  CAS  PubMed  Google Scholar 

  25. Santos DA, Barros MES, Hamdan JS (2006) Establishing a method of inoculum preparation for susceptibility testing of Trichophyton rubrum and Trichophyton mentagrophytes. J Clin Microbiol 44:98–101. https://doi.org/10.1128/JCM.44.1.98-101.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sakhanokho HF, Sampson BJ, Tabanca N, Wedge DE, Demirci B, Baser KHC, Bernier UR, Tsikolia M, Agramonte NM, Becnel JJ, Chen J, Rajasekaran K, Spiers JM (2013) Chemical composition, antifungal and insecticidal activities of Hedychium essential oils. Molecules 18:4308–4327. https://doi.org/10.3390/molecules18044308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scorzoni L, Silva ACAP, Marcos CM, Assato PA, Melo WCMA, Oliveira HC, Costa-Orlandi CB, Mendes-Giannini MJS, Fusco-Almeida AM (2017) Antifungal therapy: new advances in the understanding and treatment of mycosis. Front Microbiol 8:36. https://doi.org/10.3389/fmicb.2017.00036

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shemer A, Plotnik IB, Davidovici B, Grunwald MH, Magun R, Amichai B (2013) Treatment of tinea capitis-griseofulvin versus fluconazole—a comparative study. J Dtsch Dermatol Ges 11:737–742. https://doi.org/10.1111/ddg.12095

    Article  PubMed  Google Scholar 

  29. Silva-Rocha WP, De Azevedo MF, Chaves GM (2017) Epidemiology and fungal species distribution of superficial mycoses in Northeast Brazil. J Mycol Med 27:57–64. https://doi.org/10.1016/j.mycmed.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  30. Soares LA, Gullo FP, Sardi JCO, Pitangui NS, Costa-Orlandi CB, Sangalli-Leite F, Scorzoni L, Regasini LO, Petrônio MS, Souza PF, Silva DHS, Mendes-Giannini MJS, Fusco-Almeida AM (2014) Anti-trichophyton activity of protocatechuates and their synergism with fluconazole. Evid Based Complement Alternat Med 2014:1–9. https://doi.org/10.1155/2014/957860

    Article  Google Scholar 

  31. Souza EL, Barros JC, Oliveira CEV, COnceição ML (2010) Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. Int J Food Microbiol 137:308–311. https://doi.org/10.1016/j.ijfoodmicro.2009.11.025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Mycology Laboratory, Federal University of Paraíba and Department of Genetics, University of São Paulo for the supply of fungal strains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fillipe de Oliveira Pereira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, J.C., de Vasconcelos Pinto, Â., de Medeiros, C.A.C. et al. The Sensitivity Modifying Activity of Nerolidol and α-Bisabolol Against Trichophyton spp. Indian J Microbiol 60, 505–510 (2020). https://doi.org/10.1007/s12088-020-00895-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-020-00895-2

Keywords

Navigation