Skip to main content
Log in

Cloning and Characterizing the Thermophilic and Detergent Stable Cellulase CelMytB from Saccharophagus sp. Myt-1

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

We previously isolated and reported a second species of the Saccharophagus genus, Saccharophagus sp. strain Myt-1. In the present study, a cellulase gene (celMytB) from the genomic DNA of Myt-1 was cloned and characterized. The DNA sequence fragment contained an open reading frame of 1,893 bp that encoded a protein of 631 amino acids with an estimated molecular mass of 66.8 kDa. The deduced protein, CelMytB, had a catalytic domain that contained a conserved signature sequence (VIYEIYNEPL) of glycosyl hydrolase family 5 and a CBM6 cellulose binding module. CelMytB showed optimal activity at 55 °C and pH 6.5, which is similar to the optimal temperature and pH profile of cel5H, an endoglucanase from the closely related S. degradans 2-40. However, the cellulase (degradation of soluble cellulose) and avicelase (degradation of crystalline cellulose) activities of CelMytB were about 3-fold and 100-fold higher, respectively, than the equivalent activities of cel5H. Moreover, CelMytB could degrade xylan. From the zymogram results, we speculated that the catalytic domain of CelMytB had high activity even without the cellulose binding module. The presence of some detergents stimulated the cellulase activity of CelMytB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jarvis M (2003) Chemistry: cellulose stacks up. Nature 426:611–612

    Article  CAS  PubMed  Google Scholar 

  2. Jung YJ, Lee YS, Park IH, Chandra MS, Kim KK, Choi YL (2010) Molecular cloning, purification and characterization of thermostable β-1,3-1,4 glucanase from Bacillus subtilis A8-8. Indian J Biochem Biophys 47:203–210

    CAS  PubMed  Google Scholar 

  3. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  PubMed  Google Scholar 

  4. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  PubMed  Google Scholar 

  5. Lee YJ, Kim BK, Lee BH, Jo KI, Lee NK, Chung CH, Lee YC, Lee JW (2008) Purification and characterization of cellulase produced by Bacillus amyoliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99:378–386

    Article  CAS  PubMed  Google Scholar 

  6. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ng IS, Li CW, Yeh YF, Chen PT, Chir JL, Ma CH, Yu SM, Ho TH, Tong CG (2009) A novel endo-glucanase from the thermophilic bacterium Geobacillus sp. 70PC53 with high activity and stability over a broad range of temperatures. Extremophiles 13:425–435

    Article  CAS  PubMed  Google Scholar 

  8. Garsoux G, Lamotte J, Gerday C, Feller G (2004) Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Biochem J 384:247–253

    Article  CAS  PubMed  Google Scholar 

  9. Li X, Wang HL, Li T, Yu HY (2012) Purification and characterization of an organic solvent-tolerant alkaline cellulase from a halophilic isolate of Thalassobacillus. Biotechnol Lett 34:1531–1536

    Article  CAS  PubMed  Google Scholar 

  10. Vijayaraghavan P, Vincent SG (2012) Purification and characterization of carboxymethyl cellulase from Bacillus sp. isolated from a paddy field. Pol J Microbiol 61:51–55

    CAS  PubMed  Google Scholar 

  11. Ekborg NA, Gonzalez JM, Howard MB, Taylor LE, Hutcheson SW, Weiner RM (2005) Saccharophagus degradans gen. nov., sp. nov., a versatile marine decomposer of complex polysaccharides. Int J Syst Evol Microbiol 55:1545–1549

    Article  CAS  PubMed  Google Scholar 

  12. Andrykovitch G, Marx I (1988) Isolation of a new polysaccharide-digesting bacterium from a salt marsh. Appl Environ Microbiol 54:1061–1062

    CAS  PubMed Central  PubMed  Google Scholar 

  13. González JM, Weiner RM (2000) Phylogenetic characterization of marine bacterium strain 2-40, a decomposer of complex polysaccharides. Int J Syst Evol Microbiol 50:831–834

    Article  PubMed  Google Scholar 

  14. Weiner RM, Taylor LE II, Henrissat B et al (2008) Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T. PLoS Genet 4:e1000087

    Article  PubMed Central  PubMed  Google Scholar 

  15. Sakatoku A, Wakabayashi M, Tanaka Y, Tanaka D, Nakamura S (2012) Isolation of a novel Saccharophagus species (Myt-1) capable of degrading a variety of seaweeds and polysaccharides. MicrobiologyOpen 1:2–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tanaka D, Yoneda S, Yamashiro Y, Sakatoku A, Kayashima T, Yamakawa K, Nakamura S (2012) Characterization of a new cold-adapted lipase from Pseudomonas sp. TK-3. Appl Biochem Biotechnol 168:327–338

    Article  CAS  PubMed  Google Scholar 

  17. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  18. Schwarz WH, Bronnenmeier K, Gräbnitz F, Staudenbauer WL (1987) Activity staining of cellulases in polyacrylamide gels containing mixed linkage β-glucans. Anal Biochem 164:72–77

    Article  CAS  PubMed  Google Scholar 

  19. Ratanakhanokchai K, Kyu KL, Tanticharoen M (1999) Purification and properties of a xylan-binding endoxylanase from Alkaliphilic Bacillus sp. strain K-1. Appl Environ Microbiol 65:694–697

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Nelson N (1994) A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 153:375–380

    Google Scholar 

  21. Somogyi M (1952) Notes on sugar determination. J Biol Chem 195:19–23

    CAS  Google Scholar 

  22. Ghose TK (1987) Measurement of cellulase activities. Pure Appl Chem 59:257–268

    Article  CAS  Google Scholar 

  23. Ko JK, Jung MW, Kim KH, Choi IG (2009) Optimal production of a novel endo-acting beta-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21 (DE3). N Biotechnol 26:157–164

    Article  CAS  PubMed  Google Scholar 

  24. Watson BJ, Zhang H, Longmire AG, Moon YH, Hutcheson SW (2009) Processive endoglucanases mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191:5697–5705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gao Z, Ruan L, Chen X, Zhang Y, Xu X (2010) A novel salt-tolerant endo-beta-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol 87:1373–1382

    Article  CAS  PubMed  Google Scholar 

  26. Howard MB, Ekborg NA, Taylor LE, Hutcheson SW, Weiner RM (2004) Identification and analysis of polyserine linker domains in prokaryotic proteins with emphasis on the marine bacterium Microbulbifer degradans. Protein Sci 13:1422–1425

    Article  CAS  PubMed  Google Scholar 

  27. Badieyan S, Bevan DR, Zhang C (2012) Study and design of stability in GH5 cellulases. Biotechnol Bioeng 109:31–44

    Article  CAS  PubMed  Google Scholar 

  28. Asha BM, Revathi M, Yadav A, Sakthivel N (2012) Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J Microbiol Biotechnol 22:1501–1509

    Article  CAS  PubMed  Google Scholar 

  29. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  30. Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res. doi:10.4061/2011/280696

    Google Scholar 

Download references

Acknowledgments

This study was partly supported by grants from the Japan Society for the Promotion of Science (Grant-in Aid for JSPS Research Fellows No. 10085 (to AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Sakatoku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakatoku, A., Tanaka, D., Kamachi, H. et al. Cloning and Characterizing the Thermophilic and Detergent Stable Cellulase CelMytB from Saccharophagus sp. Myt-1. Indian J Microbiol 54, 20–26 (2014). https://doi.org/10.1007/s12088-013-0421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-013-0421-0

Keywords

Navigation