Skip to main content
Log in

A novel salt-tolerant endo-β-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Although cellulases have been isolated from various microorganisms, no functional cellulase gene has been reported in the Vibrio genus until now. In this report, a novel endo-β-1,4-glucanase gene, cel5A, 1,362 bp in length, was cloned from a newly isolated bacterium, Vibrio sp. G21. The deduced protein of cel5A contains a catalytic domain of glycosyl hydrolase family 5 (GH5), followed by a cellulose binding domain (CBM2). The GH5 domain shows the highest sequence similarity (69%) to the bifunctional beta 1,4-endoglucanase/cellobiohydrolase from Teredinibacter turnerae T7902. The mature Cel5A enzyme was overexpressed in Escherichia coli and purified to homogeneity. The optimal pH and temperature of the recombinant enzyme were determined to be 6.5–7.5 and 50°C, respectively. Cel5A was stable over a wide range of pH and retained more than 90% of total activity even after treatment in pH 5.5–10.5 for 1 h, indicating high alkali resistance. Moreover, the enzyme was activated after pretreatment with mild alkali, a novel characteristic that has not been previously reported in other cellulases. Cel5A also showed a high level of salt tolerance. Its activity rose to 1.6-fold in 0.5 M NaCl and remained elevated even in 4 M NaCl. Further experimentation demonstrated that the thermostability of Cel5A was improved in 0.4 M NaCl. In addition, Cel5A showed specific activity towards β-1,4-linkage of amorphous region of lignocellulose, and the main final hydrolysis product of carboxymethylcellulose sodium and cellooligosaccharides was cellobiose. As an alkali-activated and salt-tolerant enzyme, Cel5A is an ideal candidate for further research and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arunasri K, Sasikala C, Ramana CV, Süling J, Imhoff JF (2005) Marichromatium indicum sp. nov., a novel purple sulfur gammaproteobacterium from mangrove soil of Goa, India. Int J Syst Evol Microbiol 55:673–679

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:233–238

    Article  Google Scholar 

  • Ekborg NA, Morrill W, Burgoyne AM, Li L, Distel DL (2007) CelAB, a multifunctional cellulase encoded by Teredinibacter turnerae T7902, a culturable symbiont isolated from the wood-boring marine bivalve Lyrodus pedicallatus. Appl Environ Microbiol 73(23):7785–7788

    Article  CAS  Google Scholar 

  • Feng Y, Duan CJ, Pang H, Mo XC, Wu CF, Yu Y, Hu YL, Wei J, Tang JL, Feng JX (2007) Cloning and identification of novel cellulase genes from uncultured microorganisms in rabbit cecum and characterization of the expressed cellulases. Appl Microbiol Biotechnol 75(2):319–328

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Tech Biotechnol 42(4):223–235

    CAS  Google Scholar 

  • Hakamada Y, Koike K, Yoshimatsu T, Mori H, Kobayashi T, Ito S (1997) Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles 1(3):151–156

    Article  CAS  Google Scholar 

  • Hirasawa K, Uchimura K, Kashiwa M, Grant WD, Ito S, Kobayashi T, Horikoshi K (2006) Salt-activated endoglucanase of a strain of alkaliphilic Bacillus agaradhaerens. Antonie Van Leeuwenhoek 89(2):211–219

    Article  CAS  Google Scholar 

  • Hong K, Yan B (2008) Uncultured microorganisms in Hainan mangrove soil: diversity and functional genes. In: Liu SJ, Drake HL (eds) Microbes and the environment: perspective and challenges. Beijing, China, pp 52–58

    Google Scholar 

  • Hyde KD, Lee SY (1995) Ecology of mangrove fungi and their role in nutrient cycling: what gaps occur in our knowledge? Hydrobiologia 295:107–118

    Article  Google Scholar 

  • Ito S (1997) Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1(2):61–66

    Article  Google Scholar 

  • Ito S, Kobayashi T, Ara K, Ozaki K, Kawai S, Hatada Y (1998) Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetics, and structures. Extremophiles 2(3):185–190

    Article  CAS  Google Scholar 

  • Jiang YX, Zheng TL, Tian Y (2006) Research on mangrove soil microorganisms: past, present and future. Wei Sheng Wu Xue Bao 46(5):848–851

    Google Scholar 

  • Johnson KG, Lanthier PH, Gochnauer MB (1986) Studies of two strains of Actinopolyspora halophilia, an extremely halophilic actinomycete. Arch Microbiol 143:370–378

    Article  CAS  Google Scholar 

  • Jung ED, Lao G, Irwin D, Barr BK, Benjamin A, Wilson DB (1993) DNA sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl Environ Microbiol 59(9):3032–3043

    CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  • Li YC, Irwin D, Wilson DB (2007) Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A. Appl Environ Microbiol 73(10):3165–3172

    Article  CAS  Google Scholar 

  • Li X, Dong X, Zhao C, Chen Z, Chen F (2003) Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying from soil. World J Micobiol Biotechnol 19:375–379

    Article  Google Scholar 

  • Liebl W, Ruile P, Bronnenmeier K, Riedel K, Lottspeich F, Greif I (1996) Analysis of a Thermotoga maritima DNA fragment encoding two similar thermostable cellulases, CelA and CelB, and characterization of the recombinant enzymes. Microbiology 142(9):2533–2542

    Article  CAS  Google Scholar 

  • Lin Y, Wu X, Deng Z, Wang J, Zhou S, Vrijmoed LL, Jones EB (2002) The metabolites of the mangrove fungus Verruculina enalia No. 2606 from a salt lake in the Bahamas. Phytochemistry 59:469–471

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577

    Article  CAS  Google Scholar 

  • Ma XD, Ke T, Xiong L, Yan H, Ma LX (2007) A new plate method for screening of polysaccharide-degrading enzymes and their producing microorganisms. Wei Sheng Wu Xue Bao 47(6):1102–1104

    CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Ruby EG, Urbanowski M, Campbell J, Dunn A, Faini M, Gunsalus R, Lostroh P, Lupp C, McCann J, Millikan D, Schaefer A, Stabb E, Stevens A, Visick K, Whistler C, Greenberg EP (2005) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci 102:3004–3009

    Article  CAS  Google Scholar 

  • Pointing SB, Buswell JA, Jones EBG, Vrijmoed LLP (1999) Extracellular cellulolytic enzyme profiles of five lignicolous mangrove fungi. Mycol Res 103:696–700

    Article  Google Scholar 

  • Syn CK, Swarup S (2000) A scalable protocol for the isolation of large-sized genome DNA within an hour from several bacteria. Anal Biochem 278:86–90

    Article  CAS  Google Scholar 

  • Takeuchi M, Hatano K (1998) Gordonia rhizosphera sp. nov. isolated from the mangrove rhizosphere. Int J Syst Bacteriol 48:907–912

    Article  CAS  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo-red polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from bovine rumen. Appl Environ Microbiol 43:777–782

    CAS  Google Scholar 

  • Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of Vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115

    Article  CAS  Google Scholar 

  • Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulose. J Biotechnol 126:26–36

    Article  CAS  Google Scholar 

  • Vreeland RH, Piselli AF Jr, McDonnough S, Meyers SS (1998) Distribution and diversity of halophilic bactria in a subsurface salt formation. Extremophiles 2:321–331

    Article  CAS  Google Scholar 

  • Watson BJ, Zhang HT, Longmire AG (2009) Processive endoglucanase mediate degradation of cellulose by Saccharophagus degradans. J Bacteriol 191(18):5697–5705

    Article  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  Google Scholar 

  • Wood TM (1988) Preparation of crystalline, amorphous, and dyed cellulase substrates. Mthods Enzymol 160:19–25

    Article  CAS  Google Scholar 

  • Yan B, Hong K, Yu Z (2006) Archaeal communities in mangrove soil characterized by 16S rRNA gene colones. J Microbiol 44:566–571

    CAS  Google Scholar 

  • Yang ZY, Chen RZ, Yang F, Xu X (2001) Cloning and DNA sequencing of Bacillus pumilus endo-1, 4-beta-glucanase gene. Wei Sheng Wu Xue Bao 41:76–81

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Foundation of State Oceanic Administration HE 09302(1)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Processivity analysis of Cel5A using filter paper as substrate. (DOC 202 kb)

ESM 2

Phylogenetic analysis of Cel5A and the cellulase enzymes reported by Watson et al. (Fig. 5; J. Bacteriol. 191, 5697–5705 (2009)) (DOC 183 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Z., Ruan, L., Chen, X. et al. A novel salt-tolerant endo-β-1,4-glucanase Cel5A in Vibrio sp. G21 isolated from mangrove soil. Appl Microbiol Biotechnol 87, 1373–1382 (2010). https://doi.org/10.1007/s00253-010-2554-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2554-y

Keywords

Navigation