Skip to main content
Log in

Identification of Thermophilic Bacterial Strains Producing Thermotolerant Hydrolytic Enzymes from Manure Compost

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Ten thermophilic bacterial strains were isolated from manure compost. Phylogenetic analysis based on 16S rRNA genes and biochemical characterization allowed identification of four different species belonging to four genera: Geobacillus thermodenitrificans, Bacillus smithii, Ureibacillus suwonensis and Aneurinibacillus thermoaerophilus. PCR-RFLP profiles of the 16S-ITS-23S rRNA region allowed us to distinguish two subgroups among the G. thermodenitrificans isolates. Isolates were screened for thermotolerant hydrolytic activities (60–65°C). Thermotolerant lipolytic activities were detected for G. thermodenitrificans, A. thermoaerophilus and B. smithii. Thermotolerant protease, α-amylase and xylanase activities were also observed in the G. thermodenitrificans group. These species represent a source of potential novel thermostable enzymes for industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Freedonia Group (2010) World enzyme business report. Freedonia Group Inc, Cleveland

    Google Scholar 

  2. Gupta R, Gupta N, Rathi P (2004) Bacterial lipases: an overview of production, purification and biochemical properties. Appl Microbiol Biotechnol 64:763–781

    Article  PubMed  CAS  Google Scholar 

  3. Hasan F, Shah AA, Hameed A (2005) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235–251

    Article  Google Scholar 

  4. Kristjansson JK, Stetter KO (1992) Thermophilic bacteria. In: Kristjansson JK (ed) Thermophilic bacteria. CRC press, Boca Raton, pp 1–18

    Google Scholar 

  5. Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manage Res 1:157–176

    Google Scholar 

  6. Claus D, Berkeley RCW (1986) Genus Bacillus Cohn. In: Sharpe NS, Holt JG (eds) Bergey’s manual of systematic bacteriology vol. 2. Williams and Wilkins, Baltimore, pp 1121–1125

    Google Scholar 

  7. Ash C, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64:253–260

    Article  PubMed  CAS  Google Scholar 

  8. Fritze D (2004) Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria. Phytopathology 94:1245–1248

    Article  PubMed  Google Scholar 

  9. Wainø M, Tindall BJ, Schumann P, Ingvorsen K (1999) Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831

    Article  PubMed  Google Scholar 

  10. Fortina MG, Pukall R, Schumann P, Mora D, Parini C, Manachini PL, Stackebrandt E (2001) Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Anderson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51:447–455

    Article  PubMed  CAS  Google Scholar 

  11. Shida O, Takagi H, Kadowaki K, Komagata K (1996) Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46:939–946

    Article  PubMed  CAS  Google Scholar 

  12. Zhang YC, Ronimus RS, Turner N, Zhang Y, Morgan W (2002) Enumeration of thermophilic Bacillus species in compost and identification with a random amplification polymorphic DNA (RAPD) protocol. Syst Appl Microbiol 25:618–626

    Article  PubMed  CAS  Google Scholar 

  13. Abd-El-Haleem D, Layton CA, Sayler GS (2002) Long PCR-amplified rDNA for PCR-RFLP- and Rep-PCR based approches to recognize closely related microbial species. J Microbiol Methods 49:315–319

    Article  PubMed  CAS  Google Scholar 

  14. Terefework GNZ, Suomalainen S, Paulin L, Lindstrom K (1998) Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria. Int J Syst Bacteriol 48:349–356

    PubMed  Google Scholar 

  15. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TM (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36:W5–W9

    Article  PubMed  CAS  Google Scholar 

  16. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2007) GenBank. Nucl Acids Res 36:D25–D30

    Article  PubMed  Google Scholar 

  17. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  18. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  20. Swofford DL, Sullivan J (2002) Phylogeny inference based on parsimony and other methods using PAUP. In: Salemi M, Vandamme AM (eds) The phylogenetic handbook. A practical approach to DNA and protein phylogeny. Cambridge University press, Cambridge, pp 160–202

    Google Scholar 

  21. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore, p 787

    Google Scholar 

  22. Kouker G, Jaeger K-E (1987) Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213

    PubMed  CAS  Google Scholar 

  23. Fuwa H (1954) A new method for microdetermination of amylase activity by the use of amylase as the substrate. J Biochem 41:583–603

    CAS  Google Scholar 

  24. Teather RM, Wood PJ (1982) Use of congo red-polysaccharide interaction in enumeration and characterisation of cellulotic bacteria from bovine rumen. Appl Environ Microbiol 43:777–780

    PubMed  CAS  Google Scholar 

  25. McKay AM (1988) A plate assay method for the detection of fungal polygalacturonase secretion. FEMS Letters 56:355–358

    Article  CAS  Google Scholar 

  26. Cheeseman GC (1963) Action of rennet and other proteolytic enzymes on casein in casein-agar gels. J Dairy Res 30:17

    Article  CAS  Google Scholar 

  27. Manachini PL, Mora D, Nicastro G, Parini C, Stackebrandt E, Purkall R, Fortina MG (2000) Bacillus thermodenitrificans sp. nov., nom. Rev Int J Syst Evol Microbiol 50:1331–1337

    Article  CAS  Google Scholar 

  28. Wang L, Tang Y, Wang S, Liu L-R, Liu M-Z, Zhang Y, Liang L-F, Feng L (2006) Isolation and characterization of a novel thermophilic bacterial strain degrading long chain an-alkanes. Extremophiles 10:347–356

    Article  PubMed  CAS  Google Scholar 

  29. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degarding Geobacillus thermodenitrificans NG80–2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci 104:5602–5607

    Article  PubMed  CAS  Google Scholar 

  30. Takashima Y, Yamaga Y, Mitsuda S (1998) Nitrile hydratase from a thermophilic Bacillus smithii. J Ind Mircrobiol Biotechnol 20:220–226

    Article  CAS  Google Scholar 

  31. Kim BY, Lee SY, Weon HY, Kwon SW, Go SJ, Park YK, Schuman P, Fritze D (2006) Ureibacillus suwonensis sp. nov., isolated from cotton waste composts. Int J Syst Evol Microbiol 56:663–666

    Article  PubMed  CAS  Google Scholar 

  32. Meir-Stauffer K, Busse H-J, Rainey FA, Burghardt J, Scheberl A, Hollaus F, Kuen B, Markristathis A, Sleytr U, Messner P (1996) Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int J Syst Bacteriol 46:532–541

    Article  Google Scholar 

  33. Charbonneau DM, Meddeb-Mouelhi F, Beauregard M (2010) A novel thermostable carboxylesterase from Geobacillus thermodenitrificans: evidence for a new carboxylesterase family. J Biochem 148:299–308

    Article  PubMed  CAS  Google Scholar 

  34. Masomian M, Rhaman RNZRA, Salleh AB, Basri M (2010). A unique thermostable and organic solvent tolerant lipase from newly isolated Aneurinibacillus thermoaerophilus strain HZ: physical factor studies. World J Mircobiol Biotechnol 26:1693–1701

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through grants from NSERC. D.M.C. acknowledges the support of a PROTEO scholarship. Special thanks to Sandra Isabel for providing guidance in phylogenetic analysis, and to Dr Martin Kalmokoff (Agriculture Canada) for editorial review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Beauregard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charbonneau, D.M., Meddeb-Mouelhi, F., Boissinot, M. et al. Identification of Thermophilic Bacterial Strains Producing Thermotolerant Hydrolytic Enzymes from Manure Compost. Indian J Microbiol 52, 41–47 (2012). https://doi.org/10.1007/s12088-011-0156-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0156-8

Keywords

Navigation