Skip to main content
Log in

Gasdermin family: a promising therapeutic target for cancers and inflammation-driven diseases

  • REVIEW
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

This review focuses on current advances in researches of gasdermin family. The distinctive expression patterns and biological roles of members in this family were discussed. Most of them exhibit pore-forming activity on cell membranes and are executors for programmed cell death with cytokines release, and play roles in cancers and inflammation-driven diseases. Therefore, they can be used as potential therapeutic targets to treat related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akino K, Toyota M, Suzuki H, Imai T, Maruyama R, Kusano M, Nishikawa N, Watanabe Y, Sasaki Y, Abe T, Yamamoto E, Tarasawa I, Sonoda T, Mori M, Imai K, Shinomura Y, Tokino T (2007) Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci 98(1):88–95

    CAS  PubMed  Google Scholar 

  • Busch-Nentwich E, Sollner C, Roehl H, Nicolson T (2004) The deafness gene dfna5 is crucial for ugdh expression and HA production in the developing ear in zebrafish. Development 131(4):943–951

    CAS  PubMed  Google Scholar 

  • Chao KL, Kulakova L, Herzberg O (2017) Gene polymorphism linked to increased asthma and IBD risk alters gasdermin-B structure, a sulfatide and phosphoinositide binding protein. Proc Natl Acad Sci U S A 114(7):E1128–E1137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Shi P, Wang Y, Zou D, Wu X, Wang D, Hu Q, Zou Y, Huang Z, Ren J et al (2018a) GSDMB promotes non-canonical pyroptosis by enhancing caspase-4 activity. J Mol Cell Biol

  • Chen KW, Monteleone M, Boucher D, Sollberger G, Ramnath D, Condon ND, von Pein JB, Broz P, Sweet MJ, Schroder K (2018b) Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol 3(26)

  • Chen L, Weng B, Li H, Wang H, Li Q, Wei X, Deng H, Wang S, Jiang C, Lin R et al (2018c) A thiopyran derivative with low murine toxicity with therapeutic potential on lung cancer acting through a NF-κB mediated apoptosis-to-pyroptosis switch. Apoptosis : an International Journal on Programmed Cell Death 24(1–2):74–82

    Google Scholar 

  • Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A, Farady CJ, Pelczar P, Broz P (2019) Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J 38(10)

  • Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, Chitty JL, Fraser JA, Jennings MP, Robertson AAB, Schroder K (2019) MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol 15(6):556–559

    CAS  PubMed  Google Scholar 

  • Das S, Miller M, Beppu AK, Mueller J, McGeough MD, Vuong C, Karta MR, Rosenthal P, Chouiali F, Doherty TA, Kurten RC, Hamid Q, Hoffman HM, Broide DH (2016) GSDMB induces an asthma phenotype characterized by increased airway responsiveness and remodeling without lung inflammation. Proc Natl Acad Sci U S A 113(46):13132–13137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Defourny J, Aghaie A, Perfettini I, Avan P, Delmaghani S, Petit C (2019) Pejvakin-mediated pexophagy protects auditory hair cells against noise-induced damage. Proc Natl Acad Sci U S A 116(16):8010–8017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delmaghani S, del Castillo FJ, Michel V, Leibovici M, Aghaie A, Ron U, Van Laer L, Ben-Tal N, Van Camp G, Weil D et al (2006) Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38(7):770–778

    CAS  PubMed  Google Scholar 

  • Delmaghani S, Defourny J, Aghaie A, Beurg M, Dulon D, Thelen N, Perfettini I, Zelles T, Aller M, Meyer A et al (2015) Hypervulnerability to sound exposure through impaired adaptive proliferation of peroxisomes. Cell 163(4):894–906

    CAS  PubMed  Google Scholar 

  • Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F (2016) Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535(7610):111–116

    CAS  Google Scholar 

  • Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC (2018) The pore-forming protein Gasdermin D regulates Interleukin-1 secretion from living macrophages. Immunity 48(1):35–44 e36

    CAS  PubMed  Google Scholar 

  • Fujii T, Tamura M, Tanaka S, Kato Y, Yamamoto H, Mizushina Y, Shiroishi T (2008) Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development. Genesis (New York, NY : 2000) 46(8):418–423

    CAS  Google Scholar 

  • He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25(12):1285–1298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hergueta-Redondo M, Sarrio D, Molina-Crespo A, Vicario R, Bernado-Morales C, Martinez L, Rojo-Sebastian A, Serra-Musach J, Mota A, Martinez-Ramirez A et al (2016) Gasdermin B expression predicts poor clinical outcome in HER2-positive breast cancer. Oncotarget 7(35):56295–56308

    PubMed  PubMed Central  Google Scholar 

  • Kambara H, Liu F, Zhang X, Liu P, Bajrami B, Teng Y, Zhao L, Zhou S, Yu H, Zhou W, Silberstein LE, Cheng T, Han M, Xu Y, Luo HR (2018) Gasdermin D exerts anti-inflammatory effects by promoting neutrophil death. Cell Rep 22(11):2924–2936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanneganti A, Malireddi RKS, Saavedra PHV, Vande Walle L, Van Gorp H, Kambara H, Tillman H, Vogel P, Luo HR, Xavier RJ et al (2018) GSDMD is critical for autoinflammatory pathology in a mouse model of familial Mediterranean fever. J Exp Med 215(6):1519–1529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh M, Katoh M (2004) Evolutionary recombination hotspot around GSDML-GSDM locus is closely linked to the oncogenomic recombination hotspot around the PPP1R1B-ERBB2-GRB7 amplicon. Int J Oncol 24(4):757–763

    CAS  PubMed  Google Scholar 

  • Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, Liu PS, Lill JR, Li H, Wu J, Kummerfeld S, Zhang J, Lee WP, Snipas SJ, Salvesen GS, Morris LX, Fitzgerald L, Zhang Y, Bertram EM, Goodnow CC, Dixit VM (2015) Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526(7575):666–671

    CAS  PubMed  Google Scholar 

  • Kazmierczak M, Kazmierczak P, Peng AW, Harris SL, Shah P, Puel JL, Lenoir M, Franco SJ, Schwander M (2017) Pejvakin, a candidate stereociliary rootlet protein, regulates hair cell function in a cell-autonomous manner. J Neurosci 37(13):3447–3464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Chang X, Yamashita K, Nagpal JK, Baek JH, Wu G, Trink B, Ratovitski EA, Mori M, Sidransky D (2008a) Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene 27(25):3624–3634

    CAS  PubMed  Google Scholar 

  • Kim MS, Lebron C, Nagpal JK, Chae YK, Chang X, Huang Y, Chuang T, Yamashita K, Trink B, Ratovitski EA, Califano JA, Sidransky D (2008b) Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Biophys Res Commun 370(1):38–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacs SB, Miao EA (2017) Gasdermins: effectors of Pyroptosis. Trends Cell Biol 27(9):673–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kusumaningrum N, Lee DH, Yoon HS, Kim YK, Park CH, Chung JH (2018) Gasdermin C is induced by ultraviolet light and contributes to MMP-1 expression via activation of ERK and JNK pathways. J Dermatol Sci 90(2):180–189

    CAS  PubMed  Google Scholar 

  • Lage H, Helmbach H, Grottke C, Dietel M, Schadendorf D (2001) DFNA5 (ICERE-1) contributes to acquired etoposide resistance in melanoma cells. FEBS Lett 494(1–2):54–59

    CAS  PubMed  Google Scholar 

  • Le Jan S, Muller C, Plee J, Durlach A, Bernard P, Antonicelli F (2019) IL-23/IL-17 Axis activates IL-1beta-associated inflammasome in macrophages and generates an auto-inflammatory response in a subgroup of patients with bullous Pemphigoid. Front Immunol 10:1972

    PubMed  PubMed Central  Google Scholar 

  • Lei M, Bai X, Yang T, Lai X, Qiu W, Yang L, Lian X (2012) Gsdma3 is a new factor needed for TNF-alpha-mediated apoptosis signal pathway in mouse skin keratinocytes. Histochem Cell Biol 138(3):385–396

    CAS  PubMed  Google Scholar 

  • Li J, Zhou Y, Yang T, Wang N, Lian X, Yang L (2010) Gsdma3 is required for hair follicle differentiation in mice. Biochem Biophys Res Commun 403(1):18–23

    CAS  PubMed  Google Scholar 

  • Lin PH, Lin HY, Kuo CC, Yang LT (2015) N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting. J Biomed Sci 22:44

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lluis A, Schedel M, Liu J, Illi S, Depner M, von Mutius E, Kabesch M, Schaub B (2011) Asthma-associated polymorphisms in 17q21 influence cord blood ORMDL3 and GSDMA gene expression and IL-17 secretion. J Allergy Clin Immunol 127(6):1587–1594 e1586

    CAS  PubMed  Google Scholar 

  • Lunny DP, Weed E, Nolan PM, Marquardt A, Augustin M, Porter RM (2005) Mutations in gasdermin 3 cause aberrant differentiation of the hair follicle and sebaceous gland. J Invest Dermatol 124(3):615–621

    CAS  PubMed  Google Scholar 

  • Miguchi M, Hinoi T, Shimomura M, Adachi T, Saito Y, Niitsu H, Kochi M, Sada H, Sotomaru Y, Ikenoue T, Shigeyasu K, Tanakaya K, Kitadai Y, Sentani K, Oue N, Yasui W, Ohdan H (2016) Gasdermin C is upregulated by inactivation of transforming growth factor beta receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PloS one 11(11):e0166422

    PubMed  PubMed Central  Google Scholar 

  • Molina-Crespo A, Cadete A, Sarrio D, Gamez-Chiachio M, Martinez L, Chao K, Olivera A, Gonella A, Diaz E, Palacios J et al (2019) Intracellular delivery of an antibody targeting Gasdermin-B reduces HER2 breast Cancer aggressiveness. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research

  • Mortimer L, Moreau F, MacDonald JA, Chadee K (2016) NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nat Immunol 17(10):1176–1186

    CAS  PubMed  Google Scholar 

  • Op de Beeck K, Van Camp G, Thys S, Cools N, Callebaut I, Vrijens K, Van Nassauw L, Van Tendeloo VF, Timmermans JP, Van Laer L (2011) The DFNA5 gene, responsible for hearing loss and involved in cancer, encodes a novel apoptosis-inducing protein. Eur J Hum Gen : EJHG 19(9):965–973

    Google Scholar 

  • Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E (2018) Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science 362(6418):1064–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panganiban RA, Sun M, Dahlin A, Park HR, Kan M, Himes BE, Mitchel JA, Iribarren C, Jorgenson E, Randell SH, Israel E, Tantisira K, Shore S, Park JA, Weiss ST, Wu AC, Lu Q (2018) A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J Allergy Clin Immunol 142(5):1469–1478 e1462

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rathkey JK, Zhao J, Liu Z, Chen Y, Yang J, Kondolf HC, Benson BL, Chirieleison SM, Huang AY, Dubyak GR et al (2018) Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol 3(26)

  • Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES (2017) Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun 8:14128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10(1):1689

    PubMed  PubMed Central  Google Scholar 

  • Ruhl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P (2018) ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362(6417):956–960

    PubMed  Google Scholar 

  • Saeki N, Kuwahara Y, Sasaki H, Satoh H, Shiroishi T (2000) Gasdermin (Gsdm) localizing to mouse chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm Genome 11(9):718–724

    CAS  PubMed  Google Scholar 

  • Saeki N, Kim DH, Usui T, Aoyagi K, Tatsuta T, Aoki K, Yanagihara K, Tamura M, Mizushima H, Sakamoto H, Ogawa K, Ohki M, Shiroishi T, Yoshida T, Sasaki H (2007) GASDERMIN, suppressed frequently in gastric cancer, is a target of LMO1 in TGF-beta-dependent apoptotic signalling. Oncogene 26(45):6488–6498

    CAS  PubMed  Google Scholar 

  • Saeki N, Usui T, Aoyagi K, Kim DH, Sato M, Mabuchi T, Yanagihara K, Ogawa K, Sakamoto H, Yoshida T et al (2009) Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosom Cancer 48(3):261–271

    CAS  PubMed  Google Scholar 

  • Sato H, Koide T, Masuya H, Wakana S, Sagai T, Umezawa A, Ishiguro S-i, Tama M, Shiroishi T (1998) A new mutation Rim3 resembling re den is mapped close to retinoic acid receptor alpha (Rara) gene on mouse chromosome 11. Mamm Genome 9(1):20–25

    CAS  PubMed  Google Scholar 

  • Sborgi L, Ruhl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Muller DJ, Broz P, Hiller S (2016) GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 35(16):1766–1778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015a) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    CAS  Google Scholar 

  • Shi P, Tang A, Xian L, Hou S, Zou D, Lv Y, Huang Z, Wang Q, Song A, Lin Z, Gao X (2015b) Loss of conserved Gsdma3 self-regulation causes autophagy and cell death. Biochem J 468(2):325–336

    CAS  PubMed  Google Scholar 

  • Soderman J, Berglind L, Almer S (2015) Gene expression-genotype analysis implicates GSDMA, GSDMB, and LRRC3C as contributors to inflammatory bowel disease susceptibility. Biomed Res Int 2015:834805

    PubMed  PubMed Central  Google Scholar 

  • Sollberger G, Choidas A, Burn GL, Habenberger P, Di Lucrezia R, Kordes S, Menninger S, Eickhoff J, Nussbaumer P, Klebl B et al (2018) Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol 3(26)

  • Sun Q, Yang J, Xing G, Sun Q, Zhang L, He F (2008) Expression of GSDML associates with tumor progression in uterine cervix cancer. Transl Oncol 1(2):73–83

    PubMed  PubMed Central  Google Scholar 

  • Tamura M, Tanaka S, Fujii T, Aoki A, Komiyama H, Ezawa K, Sumiyama K, Sagai T, Shiroishi T (2007) Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89(5):618–629

    CAS  PubMed  Google Scholar 

  • Tanaka S, Tamura M, Aoki A, Fujii T, Komiyama H, Sagai T, Shiroishi T (2007) A new Gsdma3 mutation affecting anagen phase of first hair cycle. Biochem Biophys Res Commun 359(4):902–907

    CAS  PubMed  Google Scholar 

  • Tanaka S, Mizushina Y, Kato Y, Tamura M, Shiroishi T (2013) Functional conservation of Gsdma cluster genes specifically duplicated in the mouse genome. G3 (Bethesda, Md) 3(10):1843–1850

    Google Scholar 

  • Terao C, Kawaguchi T, Dieude P, Varga J, Kuwana M, Hudson M, Kawaguchi Y, Matucci-Cerinic M, Ohmura K, Riemekasten G, Kawasaki A, Airo P, Horita T, Oka A, Hachulla E, Yoshifuji H, Caramaschi P, Hunzelmann N, Baron M, Atsumi T, Hassoun P, Torii T, Takahashi M, Tabara Y, Shimizu M, Tochimoto A, Ayuzawa N, Yanagida H, Furukawa H, Tohma S, Hasegawa M, Fujimoto M, Ishikawa O, Yamamoto T, Goto D, Asano Y, Jinnin M, Endo H, Takahashi H, Takehara K, Sato S, Ihn H, Raychaudhuri S, Liao K, Gregersen P, Tsuchiya N, Riccieri V, Melchers I, Valentini G, Cauvet A, Martinez M, Mimori T, Matsuda F, Allanore Y (2017) Transethnic meta-analysis identifies GSDMA and PRDM1 as susceptibility genes to systemic sclerosis. Ann Rheum Dis 76(6):1150–1158

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Camp G, Coucke P, Balemans W, van Velzen D, van de Bilt C, van Laer L, Smith RJ, Fukushima K, Padberg GW, Frants RR et al (1995) Localization of a gene for non-syndromic hearing loss (DFNA5) to chromosome 7p15. Hum Mol Genet 4(11):2159–2163

    PubMed  Google Scholar 

  • Wan Z, Fan Y, Liu X, Xue J, Han Z, Zhu C, Wang X (2019) NLRP3 inflammasome promotes diabetes-induced endothelial inflammation and atherosclerosis. Diabetes Metab Syndr Obes Targets Ther 12:1931–1942

    CAS  Google Scholar 

  • Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103

    CAS  PubMed  Google Scholar 

  • Wang Y, Yin B, Li D, Wang G, Han X, Sun X (2018) GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun 495(1):1418–1425

    CAS  PubMed  Google Scholar 

  • Watabe E, Ito A, Asada H, Endo Y, Kobayashi T, Nakamoto K, Itami S, Takao S, Shinomura Y, Aikou T et al (2001) Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn J Cancer Res 92(2):140–151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Wang Y, Yang D, Gong Y, Rao F, Liu R, Danna Y, Li J, Fan J, Chen J, Zhang W, Zhan Q (2019) A PLK1 kinase inhibitor enhances the chemosensitivity of cisplatin by inducing pyroptosis in oesophageal squamous cell carcinoma. EBioMedicine 41:244–255

    PubMed  PubMed Central  Google Scholar 

  • Xiao J, Wang C, Yao JC, Alippe Y, Xu C, Kress D, Civitelli R, Abu-Amer Y, Kanneganti TD, Link DC, Mbalaviele G (2018) Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. PLoS Biol 16(11):e3000047

    PubMed  PubMed Central  Google Scholar 

  • Yu J, Kang MJ, Kim BJ, Kwon JW, Song YH, Choi WA, Shin YJ, Hong SJ (2011) Polymorphisms in GSDMA and GSDMB are associated with asthma susceptibility, atopy and BHR. Pediatr Pulmonol 46(7):701–708

    PubMed  Google Scholar 

  • Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J, Wang K, Sun X, Zheng J (2019) Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis 10(3):193

    PubMed  PubMed Central  Google Scholar 

  • Zhang D, Qian J, Zhang P, Li H, Shen H, Li X, Chen G (2019a) Gasdermin D serves as a key executioner of pyroptosis in experimental cerebral ischemia and reperfusion model both in vivo and in vitro. J Neurosci Res 97(6):645–660

    CAS  PubMed  Google Scholar 

  • Zhang L, Liu H, Jia L, Lyu J, Sun Y, Yu H, Li H, Liu W, Weng Y, Yu W (2019b) Exosomes mediate hippocampal and cortical neuronal injury induced by hepatic ischemia-reperfusion injury through activating pyroptosis in rats. Oxidative Med Cell Longev 2019:3753485

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China [NO. 81573733, NO. 81873130, NO. 81804025, NO. 81704056], Tianjin Municipal Natural Science Foundation [NO. 18JCYBJC94500], Scientific and Technological Research Program of Tianjin Municipal Education Commission [NO. 2017KJ164], Jiangxi Municipal Natural Science Foundation [NO. 20171ACB21075, NO. 20181BAB205073].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xijuan Jiang or Maojuan Guo.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, D., Chen, Y., Sun, Y. et al. Gasdermin family: a promising therapeutic target for cancers and inflammation-driven diseases. J. Cell Commun. Signal. 14, 293–301 (2020). https://doi.org/10.1007/s12079-020-00564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-020-00564-5

Keywords

Navigation