Skip to main content
Log in

A network map of IL-33 signaling pathway

  • Nuts and Bolts
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Interleukin-33 (IL-33) is a member of the IL-1 family of cytokines that play a central role in the regulation of immune responses. Its release from epithelial and endothelial cells is mediated by pro-inflammatory cytokines, cell damage and by recognition of pathogen-associated molecular patterns (PAMPs). The activity of IL-33 is mediated by binding to the IL-33 receptor complex (IL-33R) and activation of NF-κB signaling via the classical MyD88/IRAK/TRAF6 module. IL-33 also induces the phosphorylation and activation of ERK1/2, JNK, p38 and PI3K/AKT signaling modules resulting in the production and release of pro-inflammatory cytokines. Aberrant signaling by IL-33 has been implicated in the pathogenesis of several acute and chronic inflammatory diseases, including asthma, atopic dermatitis, rheumatoid arthritis and ulcerative colitis among others. Considering the biomedical importance of IL-33, we developed a pathway resource of signaling events mediated by IL-33/IL-33R in this study. Using data mined from the published literature, we describe an integrated pathway reaction map of IL-33/IL-33R consisting of 681 proteins and 765 reactions. These include information pertaining to 19 physical interaction events, 740 enzyme catalysis events, 6 protein translocation events, 4 activation/inhibition events, 9 transcriptional regulators and 2492 gene regulation events. The pathway map is publicly available through NetPath (http://www.netpath.org/), a resource of human signaling pathways developed previously by our group. This resource will provide a platform to the scientific community in facilitating identification of novel therapeutic targets for diseases associated with dysregulated IL-33 signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_120.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Abbreviations

IL-1:

Interleukin-1

IL-33:

Interleukin-33

PAMPs:

Pathogen-associated molecular patterns

DAMP:

Danger-associated molecular patterns

IL-33R:

IL-33 receptor complex

NF-κB:

Nuclear factor-κB

TRAF6:

TNF receptor associated factor 6

References

  • Ali S, Mohs A, Thomas M, Klare J, Ross R, Schmitz ML, Martin MU (2011) The dual function cytokine IL-33 interacts with the transcription factor NF-kappaB to dampen NF-kappaB-stimulated gene transcription. J Immunol 187:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Ashlin TG, Buckley ML, Salter RC, Johnson JL, Kwan AP, Ramji DP (2014) The anti-atherogenic cytokine interleukin-33 inhibits the expression of a disintegrin and metalloproteinase with thrombospondin motifs-1, −4 and −5 in human macrophages: requirement of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphoinositide 3-kinase signaling pathways. Int J Biochem Cell Biol 46:113–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baekkevold ES, Roussigne M, Yamanaka T, Johansen FE, Jahnsen FL, Amalric F, Brandtzaeg P, Erard M, Haraldsen G, Girard JP (2003) Molecular characterization of NF-HEV, a nuclear factor preferentially expressed in human high endothelial venules. Am J Pathol 163:69–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balakrishnan L, Soman S, Patil YB, Advani J, Thomas JK, Desai DV, Kulkarni-Kale U, Harsha HC, Prasad TS, Raju R, Pandey A, Dimitriadis E, Chatterjee A (2013) IL-11/IL11RA receptor mediated signaling: a web accessible knowledgebase. Cell Commun Adhes 20:81–86

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois E, Van LP, Samson M, Diem S, Barra A, Roga S, Gombert JM, Schneider E, Dy M, Gourdy P, Girard JP, Herbelin A (2009) The pro-Th2 cytokine IL-33 directly interacts with invariant NKT and NK cells to induce IFN-gamma production. Eur J Immunol 39:1046–1055

    Article  PubMed  CAS  Google Scholar 

  • Braun H, Afonina IS, Mueller C, Beyaert R (2018) Dichotomous function of IL-33 in health and disease: from biology to clinical implications. Biochem Pharmacol 148:238–252

    Article  PubMed  CAS  Google Scholar 

  • Bulek K, Swaidani S, Qin J, Lu Y, Gulen MF, Herjan T, Min B, Kastelein RA, Aronica M, Kosz-Vnenchak M, Li X (2009) The essential role of single Ig IL-1 receptor-related molecule/toll IL-1R8 in regulation of Th2 immune response. J Immunol 182:2601–2609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlock CI, Wu J, Zhou C, Tatum K, Adams HP, Tan F, Lou Y (2014) Unique temporal and spatial expression patterns of IL-33 in ovaries during ovulation and estrous cycle are associated with ovarian tissue homeostasis. J Immunol 193:161–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carriere V, Roussel L, Ortega N, Lacorre DA, Americh L, Aguilar L, Bouche G, Girard JP (2007) IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc Natl Acad Sci U S A 104:282–287

    Article  PubMed  CAS  Google Scholar 

  • Cayrol C, Girard JP (2018) Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 281:154–168

    Article  PubMed  CAS  Google Scholar 

  • Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, Park H, Kim J, Kim YM, Kwon YG (2009) Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAF6-mediated endothelial nitric oxide production. Blood 114:3117–3126

    Article  PubMed  CAS  Google Scholar 

  • Choi YS, Park JA, Kim J, Rho SS, Park H, Kim YM, Kwon YG (2012) Nuclear IL-33 is a transcriptional regulator of NF-kappaB p65 and induces endothelial cell activation. Biochem Biophys Res Commun 421:305–311

    Article  PubMed  CAS  Google Scholar 

  • Cohen ES, Scott IC, Majithiya JB, Rapley L, Kemp BP, England E, Rees DG, Overed-Sayer CL, Woods J, Bond NJ, Veyssier CS, Embrey KJ, Sims DA, Snaith MR, Vousden KA, Strain MD, Chan DT, Carmen S, Huntington CE, Flavell L, Xu J, Popovic B, Brightling CE, Vaughan TJ, Butler R, Lowe DC, Higazi DR, Corkill DJ, May RD, Sleeman MA, Mustelin T (2015) Oxidation of the alarmin IL-33 regulates ST2-dependent inflammation. Nat Commun 6:8327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Connolly DJ, O'Neill LA, McGettrick AF (2013) The GOLD domain-containing protein TMED1 is involved in interleukin-33 signaling. J Biol Chem 288:5616–5623

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demyanets S, Konya V, Kastl SP, Kaun C, Rauscher S, Niessner A, Pentz R, Pfaffenberger S, Rychli K, Lemberger CE, de Martin R, Heinemann A, Huk I, Groger M, Maurer G, Huber K, Wojta J (2011) Interleukin-33 induces expression of adhesion molecules and inflammatory activation in human endothelial cells and in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 31:2080–2089

    Article  PubMed  CAS  Google Scholar 

  • Demyanets S, Speidl WS, Tentzeris I, Jarai R, Katsaros KM, Farhan S, Krychtiuk KA, Wonnerth A, Weiss TW, Huber K, Wojta J (2014) Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One 9:e95055

    Article  PubMed  PubMed Central  Google Scholar 

  • Dey G, Radhakrishnan A, Syed N, Thomas JK, Nadig A, Srikumar K, Mathur PP, Pandey A, Lin SK, Raju R, Prasad TS (2013) Signaling network of Oncostatin M pathway. J Cell Commun Signal 7:103–108

    Article  PubMed  Google Scholar 

  • Drube S, Heink S, Walter S, Lohn T, Grusser M, Gerbaulet A, Berod L, Schons J, Dudeck A, Freitag J, Grotha S, Reich D, Rudeschko O, Norgauer J, Hartmann K, Roers A, Kamradt T (2010) The receptor tyrosine kinase c-kit controls IL-33 receptor signaling in mast cells. Blood 115:3899–3906

    Article  PubMed  CAS  Google Scholar 

  • Drube S, Kraft F, Dudeck J, Muller AL, Weber F, Gopfert C, Meininger I, Beyer M, Irmler I, Hafner N, Schutz D, Stumm R, Yakovleva T, Gaestel M, Dudeck A, Kamradt T (2016) MK2/3 are pivotal for IL-33-induced and mast cell-dependent leukocyte recruitment and the resulting skin inflammation. J Immunol 197:3662–3668

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Zhao L, Xiao H, Cook KM, Bai Q, Herrick EJ, Chen X, Qin C, Zhu Z, Wakefield MR, Nicholl MB (2017) IL-33 acts as a foe to MIA PaCa-2 pancreatic cancer. Med Oncol 34:23

    Article  PubMed  CAS  Google Scholar 

  • Funakoshi-Tago M, Tago K, Hayakawa M, Tominaga S, Ohshio T, Sonoda Y, Kasahara T (2008) TRAF6 is a critical signal transducer in IL-33 signaling pathway. Cell Signal 20:1679–1686

    Article  PubMed  CAS  Google Scholar 

  • Funakoshi-Tago M, Tago K, Sato Y, Tominaga S, Kasahara T (2011) JAK2 is an important signal transducer in IL-33-induced NF-kappaB activation. Cell Signal 23:363–370

    Article  PubMed  CAS  Google Scholar 

  • Gautier V, Cayrol C, Farache D, Roga S, Monsarrat B, Burlet-Schiltz O, Gonzalez de Peredo A, Girard JP (2016) Extracellular IL-33 cytokine, but not endogenous nuclear IL-33, regulates protein expression in endothelial cells. Sci Rep 6:34255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gordon ED, Simpson LJ, Rios CL, Ringel L, Lachowicz-Scroggins ME, Peters MC, Wesolowska-Andersen A, Gonzalez JR, MacLeod HJ, Christian LS, Yuan S, Barry L, Woodruff PG, Ansel KM, Nocka K, Seibold MA, Fahy JV (2016) Alternative splicing of interleukin-33 and type 2 inflammation in asthma. Proc Natl Acad Sci U S A 113:8765–8770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haraldsen G, Balogh J, Pollheimer J, Sponheim J, Kuchler AM (2009) Interleukin-33 - cytokine of dual function or novel alarmin? Trends Immunol 30:227–233

    Article  PubMed  CAS  Google Scholar 

  • Hardman C, Ogg G (2016) Interleukin-33, friend and foe in type-2 immune responses. Curr Opin Immunol 42:16–24

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa H, Hayakawa M, Kume A, Tominaga S (2007) Soluble ST2 blocks interleukin-33 signaling in allergic airway inflammation. J Biol Chem 282:26369–26380

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa H, Hayakawa M, Tominaga SI (2016) Soluble ST2 suppresses the effect of interleukin-33 on lung type 2 innate lymphoid cells. Biochem Biophys Rep 5:401–407

    PubMed  PubMed Central  Google Scholar 

  • Hong J, Bae S, Jhun H, Lee S, Choi J, Kang T, Kwak A, Hong K, Kim E, Jo S, Kim S (2011) Identification of constitutively active interleukin 33 (IL-33) splice variant. J Biol Chem 286:20078–20086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu WT, Li MQ, Liu W, Jin LP, Li DJ, Zhu XY (2014) IL-33 enhances proliferation and invasiveness of decidual stromal cells by up-regulation of CCL2/CCR2 via NF-kappaB and ERK1/2 signaling. Mol Hum Reprod 20:358–372

    Article  PubMed  CAS  Google Scholar 

  • Hudson CA, Christophi GP, Gruber RC, Wilmore JR, Lawrence DA, Massa PT (2008) Induction of IL-33 expression and activity in central nervous system glia. J Leukoc Biol 84:631–643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joshi AD, Oak SR, Hartigan AJ, Finn WG, Kunkel SL, Duffy KE, Das A, Hogaboam CM (2010) Interleukin-33 contributes to both M1 and M2 chemokine marker expression in human macrophages. BMC Immunol 11:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kandasamy K, Keerthikumar S, Raju R, Keshava Prasad TS, Ramachandra YL, Mohan S, Pandey A (2009) PathBuilder--open source software for annotating and developing pathway resources. Bioinformatics 25:2860–2862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kandasamy K, Mohan SS, Raju R, Keerthikumar S, Kumar GS, Venugopal AK, Telikicherla D, Navarro JD, Mathivanan S, Pecquet C, Gollapudi SK, Tattikota SG, Mohan S, Padhukasahasram H, Subbannayya Y, Goel R, Jacob HK, Zhong J, Sekhar R, Nanjappa V, Balakrishnan L, Subbaiah R, Ramachandra YL, Rahiman BA, Prasad TS, Lin JX, Houtman JC, Desiderio S, Renauld JC, Constantinescu SN, Ohara O, Hirano T, Kubo M, Singh S, Khatri P, Draghici S, Bader GD, Sander C, Leonard WJ, Pandey A (2010) NetPath: a public resource of curated signal transduction pathways. Genome Biol 11:R3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kearley J, Silver JS, Sanden C, Liu Z, Berlin AA, White N, Mori M, Pham TH, Ward CK, Criner GJ, Marchetti N, Mustelin T, Erjefalt JS, Kolbeck R, Humbles AA (2015) Cigarette smoke silences innate lymphoid cell function and facilitates an exacerbated type I interleukin-33-dependent response to infection. Immunity 42:566–579

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Lim SC, Kim G, Yun HJ, Ahn SG, Choi HS (2015) Interleukin-33/ST2 axis promotes epithelial cell transformation and breast tumorigenesis via upregulation of COT activity. Oncogene 34:4928–4938

    Article  PubMed  CAS  Google Scholar 

  • Kopach P, Lockatell V, Pickering EM, Haskell RE, Anderson RD, Hasday JD, Todd NW, Luzina IG, Atamas SP (2014) IFN-gamma directly controls IL-33 protein level through a STAT1- and LMP2-dependent mechanism. J Biol Chem 289:11829–11843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kunisch E, Chakilam S, Gandesiri M, Kinne RW (2012) IL-33 regulates TNF-alpha dependent effects in synovial fibroblasts. Int J Mol Med 29:530–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, van Rooijen N, Shepherd M, McSharry C, McInnes IB, Xu D, Liew FY (2009) IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 183:6469–6477

    Article  PubMed  CAS  Google Scholar 

  • Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, Cayrol C (2012) IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci U S A 109:1673–1678

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefrancais E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C, Girard JP (2014) Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci U S A 111:15502–15507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li R, Yang G, Yang R, Peng X, Li J (2015) Interleukin-33 and receptor ST2 as indicators in patients with asthma: a meta-analysis. Int J Clin Exp Med 8:14935–14943

    PubMed  PubMed Central  CAS  Google Scholar 

  • Li Q, Li D, Zhang X, Wan Q, Zhang W, Zheng M, Zou L, Elly C, Lee JH, Liu YC (2018) E3 ligase VHL promotes group 2 innate lymphoid cell maturation and function via glycolysis inhibition and induction of Interleukin-33 receptor. Immunity 48(258–270):e255

    Google Scholar 

  • Liew FY, Girard JP, Turnquist HR (2016) Interleukin-33 in health and disease. Nat Rev Immunol 16:676–689

    Article  PubMed  CAS  Google Scholar 

  • Lima IL, Macari S, Madeira MF, Rodrigues LF, Colavite PM, Garlet GP, Soriani FM, Teixeira MM, Fukada SY, Silva TA (2015) Osteoprotective effects of IL-33/ST2 link to osteoclast apoptosis. Am J Pathol 185:3338–3348

    Article  PubMed  CAS  Google Scholar 

  • Lingel A, Weiss TM, Niebuhr M, Pan B, Appleton BA, Wiesmann C, Bazan JF, Fairbrother WJ (2009) Structure of IL-33 and its interaction with the ST2 and IL-1RAcP receptors--insight into heterotrimeric IL-1 signaling complexes. Structure 17:1398–1410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Hammel M, He Y, Tainer JA, Jeng US, Zhang L, Wang S, Wang X (2013) Structural insights into the interaction of IL-33 with its receptors. Proc Natl Acad Sci U S A 110:14918–14923

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Zhu L, Lu X, Bian H, Wu X, Yang W, Qin Q (2014) IL-33/ST2 pathway contributes to metastasis of human colorectal cancer. Biochem Biophys Res Commun 453:486–492

    Article  PubMed  CAS  Google Scholar 

  • Lohning M, Stroehmann A, Coyle AJ, Grogan JL, Lin S, Gutierrez-Ramos JC, Levinson D, Radbruch A, Kamradt T (1998) T1/ST2 is preferentially expressed on murine Th2 cells, independent of interleukin 4, interleukin 5, and interleukin 10, and important for Th2 effector function. Proc Natl Acad Sci U S A 95:6930–6935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martin MU (2013) Special aspects of interleukin-33 and the IL-33 receptor complex. Semin Immunol 25:449–457

    Article  PubMed  CAS  Google Scholar 

  • Meephansan J, Tsuda H, Komine M, Tominaga S, Ohtsuki M (2012) Regulation of IL-33 expression by IFN-gamma and tumor necrosis factor-alpha in normal human epidermal keratinocytes. J Invest Dermatol 132:2593–2600

    Article  PubMed  CAS  Google Scholar 

  • Miller AM, Xu D, Asquith DL, Denby L, Li Y, Sattar N, Baker AH, McInnes IB, Liew FY (2008) IL-33 reduces the development of atherosclerosis. J Exp Med 205:339–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, Kubota M, Turner D, Diamond JM, Goldrath AW, Farber DL, Collman RG, Wherry EJ, Artis D (2011) Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol 12:1045–1054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moritz DR, Rodewald HR, Gheyselinck J, Klemenz R (1998) The IL-1 receptor-related T1 antigen is expressed on immature and mature mast cells and on fetal blood mast cell progenitors. J Immunol 161:4866–4874

    PubMed  CAS  Google Scholar 

  • Moussion C, Ortega N, Girard JP (2008) The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS One 3:e3331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mun SH, Ko NY, Kim HS, Kim JW, Kim do K, Kim AR, Lee SH, Kim YG, Lee CK, Kim BK, Beaven MA, Kim YM, Choi WS (2010) Interleukin-33 stimulates formation of functional osteoclasts from human CD14(+) monocytes. Cell Mol Life Sci 67:3883–3892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, Jolin HE, McKenzie AN (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onda H, Kasuya H, Takakura K, Hori T, Imaizumi T, Takeuchi T, Inoue I, Takeda J (1999) Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorrhage. J Cereb Blood Flow Metab 19:1279–1288

    Article  PubMed  CAS  Google Scholar 

  • Palmer G, Gabay C (2011) Interleukin-33 biology with potential insights into human diseases. Nat Rev Rheumatol 7:321–329

    Article  PubMed  CAS  Google Scholar 

  • Pecaric-Petkovic T, Didichenko SA, Kaempfer S, Spiegl N, Dahinden CA (2009) Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 113:1526–1534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinto SM, Nirujogi RS, Rojas PL, Patil AH, Manda SS, Subbannayya Y, Roa JC, Chatterjee A, Prasad TS, Pandey A (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15:532–544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pollheimer J, Bodin J, Sundnes O, Edelmann RJ, Skanland SS, Sponheim J, Brox MJ, Sundlisaeter E, Loos T, Vatn M, Kasprzycka M, Wang J, Kuchler AM, Tasken K, Haraldsen G, Hol J (2013) Interleukin-33 drives a proinflammatory endothelial activation that selectively targets nonquiescent cells. Arterioscler Thromb Vasc Biol 33:e47–e55

    Article  PubMed  CAS  Google Scholar 

  • Polumuri SK, Jayakar GG, Shirey KA, Roberts ZJ, Perkins DJ, Pitha PM, Vogel SN (2012) Transcriptional regulation of murine IL-33 by TLR and non-TLR agonists. J Immunol 189:50–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robinson KM, Ramanan K, Clay ME, McHugh KJ, Rich HE, Alcorn JF (2017) Novel protective mechanism for interleukin-33 at the mucosal barrier during influenza-associated bacterial superinfection. Mucosal Immunol

  • Robinson KM, Ramanan K, Clay ME, McHugh KJ, Rich HE, Alcorn JF (2018) Novel protective mechanism for interleukin-33 at the mucosal barrier during influenza-associated bacterial superinfection. Mucosal Immunol 11:199–208

    Article  PubMed  CAS  Google Scholar 

  • Roussel L, Erard M, Cayrol C, Girard JP (2008) Molecular mimicry between IL-33 and KSHV for attachment to chromatin through the H2A-H2B acidic pocket. EMBO Rep 9:1006–1012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salmond RJ, Mirchandani AS, Besnard AG, Bain CC, Thomson NC, Liew FY (2012) IL-33 induces innate lymphoid cell-mediated airway inflammation by activating mammalian target of rapamycin. J Allergy Clin Immunol 130(1159–1166):e1156

    Google Scholar 

  • Saluja R, Hawro T, Eberle J, Church MK, Maurer M (2014) Interleukin-33 promotes the proliferation of mouse mast cells through ST2/MyD88 and p38 MAPK-dependent and kit-independent pathways. J Biol Regul Homeost Agents 28:575–585

    PubMed  CAS  Google Scholar 

  • Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490

    Article  PubMed  CAS  Google Scholar 

  • Schulze J, Bickert T, Beil FT, Zaiss MM, Albers J, Wintges K, Streichert T, Klaetschke K, Keller J, Hissnauer TN, Spiro AS, Gessner A, Schett G, Amling M, McKenzie AN, Horst AK, Schinke T (2011) Interleukin-33 is expressed in differentiated osteoblasts and blocks osteoclast formation from bone marrow precursor cells. J Bone Miner Res 26:704–717

    Article  PubMed  CAS  Google Scholar 

  • Shang J, Zhao J, Wu X, Xu Y, Xie J (2015) Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation. Biochem Cell Biol 93:359–366

    Article  PubMed  CAS  Google Scholar 

  • Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE (2008) IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol 20:1019–1030

    Article  PubMed  CAS  Google Scholar 

  • Subbannayya Y, Anuja K, Advani J, Ojha UK, Nanjappa V, George B, Sonawane A, Kumar RV, Ramaswamy G, Pandey A, Somani BL, Raju R (2014) A network map of the gastrin signaling pathway. J Cell Commun Signal 8:165–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundlisaeter E, Edelmann RJ, Hol J, Sponheim J, Kuchler AM, Weiss M, Udalova IA, Midwood KS, Kasprzycka M, Haraldsen G (2012) The alarmin IL-33 is a notch target in quiescent endothelial cells. Am J Pathol 181:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Suzukawa M, Iikura M, Koketsu R, Nagase H, Tamura C, Komiya A, Nakae S, Matsushima K, Ohta K, Yamamoto K, Yamaguchi M (2008) An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J Immunol 181:5981–5989

    Article  PubMed  CAS  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    Article  PubMed  CAS  Google Scholar 

  • Tominaga S (1989) A putative protein of a growth specific cDNA from BALB/c-3T3 cells is highly similar to the extracellular portion of mouse interleukin 1 receptor. FEBS Lett 258:301–304

    Article  PubMed  CAS  Google Scholar 

  • Tominaga S, Jenkins NA, Gilbert DJ, Copeland NG, Tetsuka T (1991) Molecular cloning of the murine ST2 gene. Characterization and chromosomal mapping. Biochim Biophys Acta 1090:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tsuda H, Komine M, Karakawa M, Etoh T, Tominaga S, Ohtsuki M (2012) Novel splice variants of IL-33: differential expression in normal and transformed cells. J Invest Dermatol 132:2661–2664

    Article  PubMed  CAS  Google Scholar 

  • Tung HY, Plunkett B, Huang SK, Zhou Y (2014) Murine mast cells secrete and respond to interleukin-33. J Interf Cytokine Res 34:141–147

    Article  CAS  Google Scholar 

  • van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9:399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wasmer MH, Krebs P (2016) The role of IL-33-dependent inflammation in the tumor microenvironment. Front Immunol 7:682

    PubMed  Google Scholar 

  • Weinberg EO, Shimpo M, De Keulenaer GW, MacGillivray C, Tominaga S, Solomon SD, Rouleau JL, Lee RT (2002) Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 106:2961–2966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu H, Yang S, Wu X, Zhao J, Ning Q, Xu Y, Xie J (2014) Interleukin-33/ST2 signaling promotes production of interleukin-6 and interleukin-8 in systemic inflammation in cigarette smoke-induced chronic obstructive pulmonary disease mice. Biochem Biophys Res Commun 450:110–116

    Article  PubMed  CAS  Google Scholar 

  • Xi S, Xu H, Shan J, Tao Y, Hong JA, Inchauste S, Zhang M, Kunst TF, Mercedes L, Schrump DS (2013) Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest 123:1241–1261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xia J, Zhao J, Shang J, Li M, Zeng Z, Wang J, Xu Y, Xie J (2015) Increased IL-33 expression in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 308:L619–L627

    Article  PubMed  CAS  Google Scholar 

  • Xiang Y, Eyers F, Herbert C, Tay HL, Foster PS, Yang M (2016) MicroRNA-487b is a negative regulator of macrophage activation by targeting IL-33 production. J Immunol 196:3421–3428

    Article  PubMed  CAS  Google Scholar 

  • Yagami A, Orihara K, Morita H, Futamura K, Hashimoto N, Matsumoto K, Saito H, Matsuda A (2010) IL-33 mediates inflammatory responses in human lung tissue cells. J Immunol 185:5743–5750

    Article  PubMed  CAS  Google Scholar 

  • Yamazumi Y, Sasaki O, Imamura M, Oda T, Ohno Y, Shiozaki-Sato Y, Nagai S, Suyama S, Kamoshida Y, Funato K, Yasui T, Kikutani H, Yamamoto K, Dohi M, Koyasu S, Akiyama T (2016) The RNA binding protein Mex-3B is required for IL-33 induction in the development of allergic airway inflammation. Cell Rep 16:2456–2471

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa K, Takagi T, Tsukamoto T, Tetsuka T, Tominaga S (1993) Presence of a novel primary response gene ST2L, encoding a product highly similar to the interleukin 1 receptor type 1. FEBS Lett 318:83–87

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lu R, Zhao G, Pflugfelder SC, Li DQ (2011) TLR-mediated induction of pro-allergic cytokine IL-33 in ocular mucosal epithelium. Int J Biochem Cell Biol 43:1383–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao W, Hu Z (2010) The enigmatic processing and secretion of interleukin-33. Cell Mol Immunol 7:260–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao WH, Hu ZQ (2012) Up-regulation of IL-33 expression in various types of murine cells by IL-3 and IL-4. Cytokine 58:267–273

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Wei J, Mialki RK, Mallampalli DF, Chen BB, Coon T, Zou C, Mallampalli RK, Zhao Y (2012) F-box protein FBXL19-mediated ubiquitination and degradation of the receptor for IL-33 limits pulmonary inflammation. Nat Immunol 13:651–658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhong J, Sharma J, Raju R, Palapetta SM, Prasad TS, Huang TC, Yoda A, Tyner JW, van Bodegom D, Weinstock DM, Ziegler SF, Pandey A (2014) TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling. Database (Oxford) 2014:bau007

  • Zhu J, Carver W (2012) Effects of interleukin-33 on cardiac fibroblast gene expression and activity. Cytokine 58:368–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Department of Biotechnology (DBT), Government of India for research support to the Institute of Bioinformatics.SMP is a recipient of INSPIRE Faculty Award from Department of Science and Technology (DST), Government of India. RR is a recipient of SERB Young Scientist award from Department of Science and Technology (DST), Government of India. JA is a recipient of Senior Research Fellowship from Council of Scientific and Industrial Research (CSIR), Government of India. OC is a recipient of INSPIRE Fellowship from the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sneha M. Pinto or Akhilesh Pandey.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest.

Electronic supplementary material

Supplementary Table 1

A list of protein-protein interactions identified to be involved in IL-33 signaling based on the STRING analysis tool version 10.5. Only those protein-protein interactions that are experimentally determined with a medium confidence score threshold of 0.4 and above have been considered. (XLSX 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinto, S.M., Subbannayya, Y., Rex, D.A.B. et al. A network map of IL-33 signaling pathway. J. Cell Commun. Signal. 12, 615–624 (2018). https://doi.org/10.1007/s12079-018-0464-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-018-0464-4

Keywords

Navigation