Skip to main content
Log in

Dual roles of CCN proteins in breast cancer progression

  • REVIEW
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The tumor microenvironment has a powerful effect on the development and progression of human breast cancer, which may be used therapeutically. Despite efforts to understand the complex role of the tumor microenvironment in breast cancer development, the specific players and their contributions to tumorigenesis need further investigation. The CCN family of matricellular proteins comprises six members (CCN1–6; CYR61, CTGF, NOV, WISP1–3) with central roles in development, inflammation, and tissue repair. CCN proteins also exert functions during pathological processes including fibrosis and cancer by regulating extracellular signals in the cellular environment. Studies have demonstrated that all six CCN proteins exert functions in breast tumorigenesis. Although CCN proteins share a multimodular structure in which most cysteine residues are conserved within structural motifs, they may have opposing functions in breast cancer progression. A better understanding of the functions of each CCN member will assist in the development of specific therapeutic approaches for breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Banerjee S, Dhar G, Haque I, Kambhampati S, Mehta S, Sengupta K, et al. (2008) CCN5/WISP-2 expression in breast adenocarcinoma is associated with less frequent progression of the disease and suppresses the invasive phenotypes of tumor cells. Cancer Res 68:7606–7612

    Article  CAS  PubMed  Google Scholar 

  • Barcellos-Hoff MH, Akhurst RJ (2009) Transforming growth factor-beta in breast cancer: too much, too late. Breast Cancer Res 11:202

    Article  PubMed  PubMed Central  Google Scholar 

  • Bornstein P (1995) Diversity of function is inherent in matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol 130:503–506

    Article  CAS  PubMed  Google Scholar 

  • Bornstein P, Sage EH (2002) Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14:608–616

    Article  CAS  PubMed  Google Scholar 

  • Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21:1688–1698

    Article  CAS  PubMed  Google Scholar 

  • Byun D, Mohan S, Baylink DJ, Qin X (2001) Localization of the IGF binding domain and evaluation of the role of cysteine residues in IGF binding in IGF binding protein-4. J Endocrinol 169:135–143

    Article  CAS  PubMed  Google Scholar 

  • Chiang KC, Yeh CN, Chung LC, Feng TH, Sun CC, Chen MF, et al. (2015) WNT-1 inducible signaling pathway protein-1 enhances growth and tumorigenesis in human breast cancer. Sci Rep 5:8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien W, O'Kelly J, Lu D, Leiter A, Sohn J, Yin D, et al. (2011) Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis. Int J Oncol 38:1741–1747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies SR, Watkins G, Mansel RE, Jiang WG (2007) Differential expression and prognostic implications of the CCN family members WISP-1, WISP-2, and WISP-3 in human breast cancer. Ann Surg Oncol 14:1909–1918

    Article  PubMed  Google Scholar 

  • Dhar G, Banerjee S, Dhar K, Tawfik O, Mayo MS, Vanveldhuizen PJ, et al. (2008) Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2. Cancer Res 68:4580–4587

    Article  CAS  PubMed  Google Scholar 

  • Elledge RM, Green S, Ciocca D, Pugh R, Allred DC, Clark GM, et al. (1998) HER-2 expression and response to tamoxifen in estrogen receptor-positive breast cancer: a southwest oncology group study. Clin Cancer Res 4:7–12

    CAS  PubMed  Google Scholar 

  • Espinoza I, Menendez JA, Kvp CM, Lupu R (2014) CCN1 promotes vascular endothelial growth factor secretion through alphavbeta 3 integrin receptors in breast cancer. J Cell Commun Signal 8:23–27

    Article  PubMed  Google Scholar 

  • Ferrand N, Gnanapragasam A, Dorothee G, Redeuilh G, Larsen AK, Sabbah M (2014) Loss of WISP2/CCN5 in estrogen-dependent MCF7 human breast cancer cells promotes a stem-like cell phenotype. PLoS One 9:e87878

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritah A, Saucier C, De Wever O, Bracke M, Bieche I, Lidereau R, et al. (2008) Role of WISP-2/CCN5 in the maintenance of a differentiated and noninvasive phenotype in human breast cancer cells. Mol Cell Biol 28:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Brigstock DR (2004) Connective tissue growth factor (CCN2) induces adhesion of rat activated hepatic stellate cells by binding of its C-terminal domain to integrin alpha(v)beta(3) and heparan sulfate proteoglycan. J Biol Chem 279:8848–8855

    Article  CAS  PubMed  Google Scholar 

  • Ghayad SE, Vendrell JA, Bieche I, Spyratos F, Dumontet C, Treilleux I, et al. (2009) Identification of TACC1, NOV, and PTTG1 as new candidate genes associated with endocrine therapy resistance in breast cancer. J Mol Endocrinol 42:87–103

    Article  CAS  PubMed  Google Scholar 

  • Grotendorst GR, Duncan MR (2005) Individual domains of connective tissue growth factor regulate fibroblast proliferation and myofibroblast differentiation. FASEB J 19:729–738

    Article  CAS  PubMed  Google Scholar 

  • Haque I, Banerjee S, De A, Maity G, Sarkar S, Majumdar M, et al. (2015) CCN5/WISP-2 promotes growth arrest of triple-negative breast cancer cells through accumulation and trafficking of p27(Kip1) via Skp2 and FOXO3a regulation. Oncogene 34:3152–3163

    Article  CAS  PubMed  Google Scholar 

  • Harris LG, Pannell LK, Singh S, Samant RS, Shevde LA (2012) Increased vascularity and spontaneous metastasis of breast cancer by hedgehog signaling mediated upregulation of cyr61. Oncogene 31:3370–3380

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Zhang Y, Varambally S, Chinnaiyan AM, Banerjee M, Merajver SD, et al. (2008) Inhibition of CCN6 (Wnt-1-induced signaling protein 3) down-regulates E-cadherin in the breast epithelium through induction of snail and ZEB1. Am J Pathol 172:893–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Martin EE, Burman B, Gonzalez ME, Kleer CG (2016). The matricellular protein ccn6 (wisp3) decreases notch1 and suppresses breast cancer initiating cells. Oncotarget.

    Google Scholar 

  • Huber MC, Falkenberg N, Hauck SM, Priller M, Braselmann H, Feuchtinger A et al (2016) Cyr61 and YB-1 are novel interacting partners of uPAR and elevate the malignancy of triple-negative breast cancer. Oncotarget. doi:10.18632/oncotarget.9853

  • Imai Y, Moralez A, Andag U, Clarke JB, Busby WH Jr, Clemmons DR (2000) Substitutions for hydrophobic amino acids in the N-terminal domains of IGFBP-3 and −5 markedly reduce IGF-I binding and alter their biologic actions. J Biol Chem 275:18188–18194

  • Jiang WG, Watkins G, Fodstad O, Douglas-Jones A, Mokbel K, Mansel RE (2004) Differential expression of the CCN family members Cyr61, CTGF and Nov in human breast cancer. Endocr Relat Cancer 11:781–791

    Article  CAS  PubMed  Google Scholar 

  • Kleer CG, Zhang Y, Pan Q, van Golen KL, Wu ZF, Livant D, et al. (2002) WISP3 is a novel tumor suppressor gene of inflammatory breast cancer. Oncogene 21:3172–3180

    Article  CAS  PubMed  Google Scholar 

  • Kleer CG, Zhang, Y., Pan, Q., Merajver, S.D. (2004). WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia 6: 179–185.

  • Lau LF (2016) Cell surface receptors for CCN proteins. J Cell Commun Signal 10:121–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Leask A, Abraham DJ (2006) All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci 119:4803–4810

    Article  CAS  PubMed  Google Scholar 

  • Nguyen N, Kuliopulos A, Graham RA, Covic L (2006) Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res 66:2658–2665

    Article  CAS  PubMed  Google Scholar 

  • Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339:1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Ouellet V, Tiedemann K, Mourskaia A, Fong JE, Tran-Thanh D, Amir E, et al. (2011) CCN3 impairs osteoblast and stimulates osteoclast differentiation to favor breast cancer metastasis to bone. Am J Pathol 178:2377–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal A, Huang W, Li X, Toy KA, Nikolovska-Coleska Z, Kleer CG (2012a) CCN6 modulates BMP signaling via the Smad-independent TAK1/p38 pathway, acting to suppress metastasis of breast cancer. Cancer Res 72:4818–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal A, Huang W, Toy KA, Kleer CG (2012b) CCN6 knockdown disrupts acinar organization of breast cells in three-dimensional cultures through up-regulation of type III TGF-beta receptor. Neoplasia 14:1067–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, et al. (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–254

    Article  CAS  PubMed  Google Scholar 

  • Pein M, Oskarsson T (2015) Microenvironment in metastasis: roadblocks and supportive niches. Am J Phys Cell Physiol 309:C627–C638

    Article  CAS  Google Scholar 

  • Perbal B (2001) NOV (nephroblastoma overexpressed) and the CCN family of genes: structural and functional issues. Mol Pathol 54:57–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perbal B, Martinerie C, Sainson R, Werner M, He B, Roizman B (1999) The C-terminal domain of the regulatory protein NOVH is sufficient to promote interaction with fibulin 1C: a clue for a role of NOVH in cell-adhesion signaling. Proc Natl Acad Sci U S A 96:869–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Planque N, Long Li C, Saule S, Bleau AM, Perbal B (2006) Nuclear addressing provides a clue for the transforming activity of amino-truncated CCN3 proteins. J Cell Biochem 99:105–116

    Article  CAS  PubMed  Google Scholar 

  • Pollak MN (2004). Insulin-like growth factors and neoplasia. Novartis Found Symp 262: 84–98; discussion 98–107, 265–108.

  • Provenzano PP, Eliceiri KW, Keely PJ (2009) Shining new light on 3D cell motility and the metastatic process. Trends Cell Biol 19:638–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen PP (2009) Rosen's breast pathology, 3rd edn. Philadelphia, Wolters Kluwer/Lippincott Williams & Wilkins

    Google Scholar 

  • Sanchez-Bailon MP, Calcabrini A, Mayoral-Varo V, Molinari A, Wagner KU, Losada JP, et al. (2015) Cyr61 as mediator of Src signaling in triple negative breast cancer cells. Oncotarget 6:13520–13538

    Article  PubMed  PubMed Central  Google Scholar 

  • Sin WC, Tse M, Planque N, Perbal B, Lampe PD, Naus CC (2009) Matricellular protein CCN3 (NOV) regulates actin cytoskeleton reorganization. J Biol Chem 284:29935–29944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slamon D, Pegram M (2001) Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 28:13–19

    Article  CAS  PubMed  Google Scholar 

  • Surmacz E (2000) Function of the IGF-I receptor in breast cancer. J Mammary Gland Biol Neoplasia 5:95–105

    Article  CAS  PubMed  Google Scholar 

  • Tsai MS, Hornby AE, Lakins J, Lupu R (2000) Expression and function of CYR61, an angiogenic factor, in breast cancer cell lines and tumor biopsies. Cancer Res 60:5603–5607

    CAS  PubMed  Google Scholar 

  • Tsai MS, Bogart DF, Castaneda JM, Li P, Lupu R (2002) Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene 21:8178–8185

    Article  CAS  PubMed  Google Scholar 

  • van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, et al. (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5:2511–2519

    PubMed  Google Scholar 

  • Wang MY, Chen PS, Prakash E, Hsu HC, Huang HY, Lin MT, et al. (2009) Connective tissue growth factor confers drug resistance in breast cancer through concomitant up-regulation of Bcl-xL and cIAP1. Cancer Res 69:3482–3491

    Article  CAS  PubMed  Google Scholar 

  • Xie D, Nakachi K, Wang H, Elashoff R, Koeffler HP (2001) Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res 61:8917–8923

    CAS  PubMed  Google Scholar 

  • Yang GP, Lau LF (1991) Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ 2:351–357

    CAS  PubMed  Google Scholar 

  • Zhang R, Averboukh L, Zhu W, Zhang H, Jo H, Dempsey PJ, et al. (1998) Identification of rCop-1, a new member of the CCN protein family, as a negative regulator for cell transformation. Mol Cell Biol 18:6131–6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Pan Q, Zhong H, Merajver SD, Kleer CG (2005) Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells. Breast Cancer Res 7:R1080–R1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am grateful to members of the Kleer lab and Dr. Perbal for helpful suggestions and discussions. This work was supported by a grant from the National institutes of Health (R01 CA125577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celina G. Kleer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kleer, C.G. Dual roles of CCN proteins in breast cancer progression. J. Cell Commun. Signal. 10, 217–222 (2016). https://doi.org/10.1007/s12079-016-0345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-016-0345-7

Keywords

Navigation