Skip to main content
Log in

Effects of homocysteine on adipocyte differentiation and CD36 gene expression in 3T3-L1 adipocytes

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The aim of this study was to investigate the effects of homocysteine (Hcy), a risk factor for cardiovascular diseases, hypertension, stroke and obesity, on expression of CD36 that regulates uptake of oxidized low-density lipoprotein (Ox-LDL) by adipocytes and differentiation of 3T3-L1 cells to adipocytes. Cell viability was determined using MTT assay, and density of triglycerides were measured with Oil Red O staining. The expression levels of CD36 were analyzed using SYBR green assay by quantitative RT-PCR. Our results showed that the addition of Hcy inhibited differentiation of 3T3-L1 preadipocytes in a dose-dependent manner without a significant cell toxicity (p < 0.05). Percentage CD36 gene expression increased in the Hcy treatment groups, but not statistically significantly (p > 0.05) compared to differentiated adipocytes. Hcy reduced adipocyte differentiation, but had no effect on the expression level of CD36 in vitro conditions. The effect of Hcy on uptake and clearance of Ox-LDL by adipose tissue now needs to be investigated in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Hcy:

Homocysteine

Ox-LDL:

Oxidized low-density lipoprotein

IBMX:

Isobutylmethyl xanthine

PPARγ:

Peroxisome proliferator-activated receptor gamma

C/EBPα:

CCAAT/enhancer binding protein alpha

References

  • Beauchamp MC, Renier G (2002) Homocysteine induces protein kinase C activation and stimulates c-Fos and lipoprotein lipase expression in macrophages. Diabetes 51:1180–1187

    Article  CAS  PubMed  Google Scholar 

  • Bijland S, Mancini SJ, Salt IP (2013) Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci 124:491–507

    Article  CAS  Google Scholar 

  • Bray GA (2004) Medical consequences of obesity. J Clin Endocrinol Metab 89(6):2583–2589

    Article  CAS  PubMed  Google Scholar 

  • Christiaens V, Van Hul M, Lijnen HR, Scroyen I (2012) CD36 promotes adipocyte differentiation and adipogenesis. Biochim Biophys Acta 1820:949–956

    Article  CAS  PubMed  Google Scholar 

  • Chui PC, Guan HP, Lehrke M, Lazar MA (2005) PPARgamma regulates adipocyte cholesterol metabolism via oxidized LDL receptor 1. J Clin Invest 115(8):2244–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA (1993) CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 268(16):11811–11816

    CAS  PubMed  Google Scholar 

  • Hajri T, Hall AM, Jensen DR, Pietka TA, Drover VA, Tao H, Eckel R, Abumrad NA (2007) CD36-facilitated fatty acid uptake inhibits leptin production and signaling in adipose tissue. Diabetes 56:1872–1880

    Article  CAS  PubMed  Google Scholar 

  • Ide N, Keller C, Weiss N (2006) Aged garlic extract inhibits homocysteine-induced CD36 expression and foam cell formation in human macrophages. J Nutr 136(3 Suppl):755S–758S

    Article  CAS  PubMed  Google Scholar 

  • Jones JR, Barrick C, Kim KA, Lindner J, Blondeau B, Fujimoto Y, Shiota M, Kesterson RA, Kahn BB, Magnuson MA (2005) Deletion of PPAR gamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci U S A 102:6207–6212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuniyasu A, Hayashi S, Nakayama H (2002) Adipocytes recognize and degrade oxidized low density lipoprotein through CD36. Biochem Biophys Res Commun 295(2):319–323

    Article  CAS  PubMed  Google Scholar 

  • Lavie CJ, Milani RV, Ventura HO (2009) Obesity and cardiovascular disease: Risk factor, paradox, and impact of weight loss. J Am Coll Cardiol 53(21):1925–1932

    Article  PubMed  Google Scholar 

  • Lefrere I, De Coppet P, Camelin JC, Le Lay S, Mercier N, Elshourbagy N, Bril A, Berrebi-Bertrand I, Feve B, Krief S (2002) Neuropeptide AF and FF modulation of adipocyte metabolism. Primary insights from functional genomics and effects on beta-adrenergic responsiveness. J Biol Chem 277(42):39169–39178

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jiang C, Xu G, Wang N, Zhu Y, Tang C, Wang X (2008) Homocysteine upregulates resistin production from adipocytes in vivo and in vitro. Diabetes 57(4):817–827

    Article  CAS  PubMed  Google Scholar 

  • Lin N, Qin S, Luo S, Cui S, Huang G, Zhang X (2014) Homocysteine induces cytotoxicity and proliferation inhibition in neural stem cells via DNA methylation in vitro. FEBS J 281:2088–2096

    Article  CAS  PubMed  Google Scholar 

  • Liu CC, Ho WY, Leu KL, Tsai HM, Yang TH (2009) Effects of S-Adenosylhomocysteine and Homocysteine on DNA Damage and Cell Cytotoxicity in Murine Hepatic and Microglia Cell Lines. J Biochem Mol Toxicol 23(5):349–356

    Article  CAS  PubMed  Google Scholar 

  • Lovren F, Teoh H, Verma S (2015) Obesity and atherosclerosis: Mechanistic insights. Can J Cardiol 31(2):177–183

    Article  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Mujumdar VS, Tummalapalli CM, Aru GM, Tyagi SC (2002) Mechanism of constrictive vascular remodeling by homocysteine: role of PPAR. Am J Physiol Cell Physiol 282(5):C1009–C1015

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi T, Akabane ER, Nanami M, Kiyobayashi Y, Moriguchi R, Hasuike Y, Otaki Y, Miyagawa K, Itahana R, Izumi M (2005) Comparison of cytotoxicity of cysteine and homocysteine for renal epithelial cells. Nephron Exp Nephrol 100(1):e11–e20

    Article  CAS  PubMed  Google Scholar 

  • Ntambi JM, Young-Cheul K (2000) Adipocyte differentiation and gene expression. J Nutr 130(12):3122S–3126S

    Article  CAS  PubMed  Google Scholar 

  • Poddar R, Sivasubramanian N, DiBello PM, Robinson K, Jacobsen DW (2001) Homocysteine induces expression and secretion of monocyte chemoattractant protein-1 and interleukin-8 in human aortic endothelial cells. Circulation 103:2717–2723

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil Red O. Histochemistry 97:493–497

    Article  CAS  PubMed  Google Scholar 

  • Sung JJ, Kim HJ, Choi-Kwon S, Lee JH, Kim M, Lee KW (2002) Homocysteine induces oxidative cytotoxicity in Cu, Zn-superoxide dismutase mutant motor neuronal cell. Neuroreport 13(4):377–381

    Article  CAS  PubMed  Google Scholar 

  • Vayá A, Ejarque I, Tembl J, Corella D, Laiz B (2011) Hyperhomocysteinemia, obesity and cryptogenic stroke. Clin Hemorheol Microcirc 47(1):53–58

    Article  PubMed  Google Scholar 

  • Wang Z, Dou X, Yao T, Song Z (2011a) Homocysteine inhibits adipogenesis in 3T3-L1 preadipocytes. Exp Biol Med 236:1379–1388

    Article  CAS  Google Scholar 

  • Wang Z, Pini M, Yao T, Zhou Z, Sun C, Fantuzzi G, Song Z (2011b) Homocysteine suppresses lipolysis in adipocytes by activating the AMPK pathway. Am J Physiol Endocrinol Metab 30:E703–E712

    Article  Google Scholar 

  • Wu ZH, Zhao SP (2006) Adipocyte: a potential target for the treatment of atherosclerosis. Med Hypotheses 67(1):82–86

    Article  CAS  PubMed  Google Scholar 

  • Xuan H, Li Z, Yan H, Sang Q, Wang K, He Q, Wang Y, Hu F (2014). Antitumor activity of Chinese propolis in human breast cancer MCF-7 and MDA-MB-231 cells. Evid Based Complement Alternat Med. Article ID 280120, 11 pages

  • Yideng J, Zhihong L, Jiantuan X, Jun C, Guizhong L, Shuren W (2008) Homocysteine-mediated PPARα,γ DNA methylation and its potential pathogenic mechanism in monocytes. DNA Cell Biol 27(3):143–150

    Article  PubMed  Google Scholar 

  • Zhao SP, Wu J, Zhang DQ, Ye HJ, Liu L, Li JQ (2004) Fenofibrate enhances CD36 mediated endocytic uptake and degradation of oxidized low density lipoprotein in adipocytes from hypercholesterolemia rabbit. Atherosclerosis 177(2):255–262

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Yang X, Zhang YO, Cai GP (2008) Interleukin-8 inhibits clonal expansion of 3T3-L1 preadipocyte during differentiation. Chin J Appl Physiol 24(2):243–247

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Karadeniz Technical University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Mentese.

Ethics declarations

Conflicts of Interest

None of the authors had any financial or personal relationships with other individuals or organizations that might inappropriately influence their work during the submission process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mentese, A., Alver, A., Sumer, A. et al. Effects of homocysteine on adipocyte differentiation and CD36 gene expression in 3T3-L1 adipocytes. J. Cell Commun. Signal. 10, 55–60 (2016). https://doi.org/10.1007/s12079-015-0316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-015-0316-4

Keywords

Navigation