Skip to main content

Advertisement

Log in

Expression of genes associated with inflammation and iron metabolism in 3T3-L1 cells induced with macrophages-conditioned medium, glucose and iron

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Obesity is characterized by a chronic inflammatory process, with an increased volume of total adipose tissue, especially visceral, which secretes pro-inflammatory cytokines such as TNF-α and IL-6. Hepcidin (Hpc), a main iron metabolism regulator, is synthetized by an IL-6 stimuli, among others, in liver and adipose tissue, favoring an association between the inflammatory process and iron metabolism. Still there are questions remain regarding the interaction of these factors. Our aim was to study the effect of a macrophage-conditioned medium (MCM) on adipocyte cells challenged with glucose and/or iron. We studied the mRNA relative abundance of genes related to inflammation in differentiated 3T3-L1 cells challenged with Fe (40 µM), glucose (20 mM) or Fe/glucose (40 µM/20 mM) with or without MCM for 24 h. We also measured the intracellular iron levels under these conditions. Our results showed that when adipocytes were challenged with MCM, glucose and/or Fe, the intracellular iron and mRNA levels of pro-inflammatory cytokines increased. These responses were higher when all the stimuli were combined with MCM from macrophages. Thus, we showed that combined high glucose/high Fe alone or with MCM may contribute to an increase on intracellular iron and inflammatory response in 3T3-L1 differentiated cells, by increased mRNA levels of IL-6, TNF-α, MCP-1, Hpc and reducing adiponectin levels, enhancing the inflammatory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguilar Cordero MJ, González Jiménez E, Sánchez Perona J, Padilla López CA, Álvarez Ferre J, Ocete Hita E, Rizo Baeza M, Guisado Barrilao R, García Rivas F (2012) Obesidad y su relación con marcadores de inflamación y ácidos grasos de eritrocito en un grupo de adolescentes obesos. Nutr Hosp 27:161–164

    PubMed  CAS  Google Scholar 

  • Alvarez-Hernandez X, Nichols GM, Glass J (1991) Caco-2 cell line: a system for studying intestinal iron transport across epithelial cell monolayers. Biochim Biophys Acta 1070:205–208

    Article  PubMed  CAS  Google Scholar 

  • Andrews M, Arredondo M (2012) Hepatic and adipocyte cells respond differentially to iron overload, hypoxic and inflammatory challenge. Biometals 25:749–759

    Article  PubMed  CAS  Google Scholar 

  • Bekri S, Gual P, Anty R, Luciani N, Dahman M, Ramesh B, Iannelli A, Staccini-Myx A, Casanova D, Ben Amor I, Saint-Paul MC, Huet PM, Sadoul JL, Gugenheim J, Srai SK, Tran A, Le Marchand-Brustel Y (2006) Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131:788–796

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Montagnani M, Funahashi T, Shimomura I, Quon MJ (2003) Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J Biol Chem 278:45021–45026

    Article  PubMed  CAS  Google Scholar 

  • Chua AC, Klopcic BR, Ho DS, Fu SK, Forrest CH, Croft KD, Olynyk JK, Lawrance IC, Trinder D (2013) Dietary iron enhances colonic inflammation and IL-6/IL-11-Stat3 signaling promoting colonic tumor development in mice. PLoS ONE 8:e78850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constant VA, Gagnon A, Landry A, Sorisky A (2006) Macrophage-conditioned medium inhibits the differentiation of 3T3-L1 and human abdominal preadipocytes. Diabetologia 49:1402–1411

    Article  PubMed  CAS  Google Scholar 

  • Constant VA, Gagnon A, Yarmo M, Sorisky A (2008) The antiadipogenic effect of macrophage-conditioned medium depends on ERK1/2 activation. Metabolism 57:465–472

    Article  PubMed  CAS  Google Scholar 

  • Devi TS, Lee I, Huttemann M, Kumar A, Nantwi KD, Singh LP (2012) TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp Diabetes Res 2012:438238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding C, Wilding JP, Bing C (2013) 1,25-Dihydroxyvitamin D3 protects against macrophage-induced activation of NFkappaB and MAPK signalling and chemokine release in human adipocytes. PLoS ONE 8:e61707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eder K, Baffy N, Falus A, Fulop AK (2009) The major inflammatory mediator interleukin-6 and obesity. Inflamm Res 58:727–736

    Article  PubMed  CAS  Google Scholar 

  • Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145:2273–2282

    Article  PubMed  CAS  Google Scholar 

  • Gabrielsen JS, Gao Y, Simcox JA, Huang J, Thorup D, Jones D, Cooksey RC, Gabrielsen D, Adams TD, Hunt SC, Hopkins PN, Cefalu WT, McClain DA (2012) Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest 122:3529–3540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galy B, Ferring-Appel D, Kaden S, Grone HJ, Hentze MW (2008) Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab 7:79–85

    Article  PubMed  CAS  Google Scholar 

  • Han CY, Subramanian S, Chan CK, Omer M, Chiba T, Wight TN, Chait A (2007) Adipocyte-derived serum amyloid A3 and hyaluronan play a role in monocyte recruitment and adhesion. Diabetes 56:2260–2273

    Article  PubMed  CAS  Google Scholar 

  • Hsu CL, Lin YJ, Ho CT, Yen GC (2013) The inhibitory effect of pterostilbene on inflammatory responses during the interaction of 3T3-L1 adipocytes and RAW 264.7 macrophages. J Agric Food Chem 61:602–610

    Article  PubMed  CAS  Google Scholar 

  • Hubbard AC, Bandyopadhyay S, Wojczyk BS, Spitalnik SL, Hod EA, Prestia KA (2013) Effect of dietary iron on fetal growth in pregnant mice. Comp Med 63:127–135

    PubMed  PubMed Central  CAS  Google Scholar 

  • Isakson P, Hammarstedt A, Gustafson B, Smith U (2009) Impaired preadipocyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 58:1550–1557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, Nickenig G, Werner N (2013) High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 98:94–106

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Guo L, Xie LQ, Zhang YY, Liu XH, Zhang Y, Zhu H, Yang PY, Lu HJ, Tang QQ (2014) Proteome profiling of mitotic clonal expansion during 3T3-L1 adipocyte differentiation using iTRAQ-2DLC-MS/MS. J Proteome Res 13:1307–1314

    Article  PubMed  CAS  Google Scholar 

  • Jung HA, Jung HJ, Jeong HY, Kwon HJ, Ali MY, Choi JS (2014) Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPalpha and PPARgamma. Fitoterapia 92:260–269

    Article  PubMed  CAS  Google Scholar 

  • Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M (2006) MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 116:1494–1505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim KY, Kim JK, Han SH, Lim JS, Kim KI, Cho DH, Lee MS, Lee JH, Yoon DY, Yoon SR, Chung JW, Choi I, Kim E, Yang Y (2006) Adiponectin is a negative regulator of NK cell cytotoxicity. J Immunol (Baltimore, Md : 1950) 176:5958–5964

    Article  CAS  Google Scholar 

  • Kong WN, Gao G, Chang YZ (2014) Hepcidin and sports anemia. Cell Biosci 4:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, Maeda K, Nagaretani H, Kishida K, Maeda N, Nagasawa A, Funahashi T, Matsuzawa Y (2004) Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 109:2046–2049

    Article  PubMed  CAS  Google Scholar 

  • Lawless MW, Mankan AK, White M, O’Dwyer MJ, Norris S (2007) Expression of hereditary hemochromatosis C282Y HFE protein in HEK293 cells activates specific endoplasmic reticulum stress responses. BMC Cell Biol 8:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lepur A, Carlsson MC, Novak R, Dumic J, Nilsson UJ, Leffler H (2012) Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types. Biochim Biophys Acta 1820:804–818

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, Scherer PE (2005) The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem 280:4617–4626

    Article  PubMed  CAS  Google Scholar 

  • Liu XB, Nguyen NB, Marquess KD, Yang F, Haile DJ (2005) Regulation of hepcidin and ferroportin expression by lipopolysaccharide in splenic macrophages. Blood Cells Mol Dis 35:47–56

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Manna P, Jain SK (2013) PIP3 but not PIP2 increases GLUT4 surface expression and glucose metabolism mediated by AKT/PKCzeta/lambda phosphorylation in 3T3L1 adipocytes. Mol Cell Biochem 381:291–299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell RM, Lee SY, Randazzo WT, Simmons Z, Connor JR (2009) Influence of HFE variants and cellular iron on monocyte chemoattractant protein-1. J Neuroinflammation 6:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Monickaraj F, Aravind S, Nandhini P, Prabu P, Sathishkumar C, Mohan V, Balasubramanyam M (2013) Accelerated fat cell aging links oxidative stress and insulin resistance in adipocytes. J Biosci 38:113–122

    Article  PubMed  CAS  Google Scholar 

  • More S, Shivkumar VB, Gangane N, Shende S (2013) Effects of iron deficiency on cognitive function in school going adolescent females in rural area of central India. Anemia 2013:819136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nemeth E, Rivera S, Gabayan V, Keller C, Taudorf S, Pedersen BK, Ganz T (2004a) IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J Clin Invest 113:1271–1276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nemeth E, Tuttle MS, Powelson J, Vaughn MB, Donovan A, Ward DM, Ganz T, Kaplan J (2004b) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (New York, NY) 306:2090–2093

    Article  CAS  Google Scholar 

  • Nicolas G, Chauvet C, Viatte L, Danan JL, Bigard X, Devaux I, Beaumont C, Kahn A, Vaulont S (2002) The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J Clin Invest 110:1037–1044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Hara A, Lim FL, Mazzatti DJ, Trayhurn P (2012) Stimulation of inflammatory gene expression in human preadipocytes by macrophage-conditioned medium: upregulation of IL-6 production by macrophage-derived IL-1beta. Mol Cell Endocrinol 349:239–247

    Article  PubMed  CAS  Google Scholar 

  • Ohira H, Fujioka Y, Katagiri C, Mamoto R, Aoyama-Ishikawa M, Amako K, Izumi Y, Nishiumi S, Yoshida M, Usami M, Ikeda M (2013) Butyrate attenuates inflammation and lipolysis generated by the interaction of adipocytes and macrophages. J Atheroscler Thromb 20:425–442

    Article  PubMed  CAS  Google Scholar 

  • Park CH, Valore EV, Waring AJ, Ganz T (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276:7806–7810

    Article  PubMed  CAS  Google Scholar 

  • Peslova G, Petrak J, Kuzelova K, Hrdy I, Halada P, Kuchel PW, Soe-Lin S, Ponka P, Sutak R, Becker E, Huang ML, Suryo Rahmanto Y, Richardson DR, Vyoral D (2009) Hepcidin, the hormone of iron metabolism, is bound specifically to alpha-2-macroglobulin in blood. Blood 113:6225–6236

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pigeon C, Ilyin G, Courselaud B, Leroyer P, Turlin B, Brissot P, Loreal O (2001) A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem 276:7811–7819

    Article  PubMed  CAS  Google Scholar 

  • Sonnweber T, Ress C, Nairz M, Theurl I, Schroll A, Murphy AT, Wroblewski V, Witcher DR, Moser P, Ebenbichler CF, Kaser S, Weiss G (2012) High-fat diet causes iron deficiency via hepcidin-independent reduction of duodenal iron absorption. J Nutr Biochem 23:1600–1608

    Article  PubMed  CAS  Google Scholar 

  • Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Franco OH, Hu FB, Cai L, Yu Z, Li H, Ye X, Qi Q, Wang J, Pan A, Liu Y, Lin X (2008) Ferritin concentrations, metabolic syndrome, and type 2 diabetes in middle-aged and elderly chinese. J Clin Endocrinol Metab 93:4690–4696

    Article  PubMed  CAS  Google Scholar 

  • Tajima S, Ikeda Y, Sawada K, Yamano N, Horinouchi Y, Kihira Y, Ishizawa K, Izawa-Ishizawa Y, Kawazoe K, Tomita S, Minakuchi K, Tsuchiya K, Tamaki T (2012) Iron reduction by deferoxamine leads to amelioration of adiposity via the regulation of oxidative stress and inflammation in obese and type 2 diabetes KKAy mice. Am J Physiol Endocrinol Metab 302:E77–E86

    Article  PubMed  CAS  Google Scholar 

  • Tanner RM, Brown TM, Muntner P (2012) Epidemiology of obesity, the metabolic syndrome, and chronic kidney disease. Curr Hypertens Rep 14:152–159

    Article  PubMed  CAS  Google Scholar 

  • Tsiotra PC, Boutati E, Dimitriadis G, Raptis SA (2013) High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. Biomed Res Int 2013:487081

    Article  PubMed  CAS  Google Scholar 

  • Tussing-Humphreys LM, Liang H, Nemeth E, Freels S, Braunschweig CA (2009) Excess adiposity, inflammation, and iron-deficiency in female adolescents. J Am Diet Assoc 109:297–302

    Article  PubMed  CAS  Google Scholar 

  • Unoki H, Bujo H, Jiang M, Kawamura T, Murakami K, Saito Y (2005) Macrophages regulate tumor necrosis factor-alpha expression in adipocytes through the secretion of matrix metalloproteinase-3. Int J Obes (Lond) 32:902–911

    Article  CAS  Google Scholar 

  • Vokurka M, Lacinova Z, Kremen J, Kopecky P, Blaha J, Pelinkova K, Haluzik M, Necas E (2010) Hepcidin expression in adipose tissue increases during cardiac surgery. Physiol Res 59:393–400

    PubMed  CAS  Google Scholar 

  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V (2002) Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184:172–179

    Article  PubMed  CAS  Google Scholar 

  • Wolin KY, Carson K, Colditz GA (2010) Obesity and cancer. Oncologist 15:556–565

    Article  PubMed  PubMed Central  Google Scholar 

  • Wrighting DM, Andrews NC (2006) Interleukin-6 induces hepcidin expression through STAT3. Blood 108:3204–3209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaji S, Sharp P, Ramesh B, Srai SK (2004) Inhibition of iron transport across human intestinal epithelial cells by hepcidin. Blood 104:2178–2180

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Han Y, Chen C, Sun H, He D, Guo J, Jiang B, Zhou L, Zeng C (2013) EGCG attenuates high glucose-induced endothelial cell inflammation by suppression of PKC and NF-kappaB signaling in human umbilical vein endothelial cells. Life Sci 92:589–597

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Zhang J, Ni J, Ouyang B, Wang D, Luo S, Xie B, Xuan D (2014) Toll-like receptor 4-mediated hyper-responsiveness of gingival epithelial cells to lipopolysaccharide in high-glucose environments. J Periodontol 85:1620–1628

    Article  PubMed  Google Scholar 

  • Yeop Han C, Kargi AY, Omer M, Chan CK, Wabitsch M, O’Brien KD, Wight TN, Chait A (2010) Differential effect of saturated and unsaturated free fatty acids on the generation of monocyte adhesion and chemotactic factors by adipocytes: dissociation of adipocyte hypertrophy from inflammation. Diabetes 59:386–396

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Wang JJ, Zhang SX (2012) Intermittent but not constant high glucose induces ER stress and inflammation in human retinal pericytes. Adv Exp Med Biol 723:285–292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the FONDECYT No 1110080 to M Arredondo and DIUBB No 1674204/I to L Briones.

Author information

Authors and Affiliations

Authors

Contributions

LB conception and design of research, performed experiments, analysis of data and drafted manuscript. MAG, conception and design of research, interpreted results of experiments and drafted manuscript. FP interpreted results of experiments, analysis of data and drafted manuscript MAO conception and design of research, interpreted results of experiments, prepared figures, analysis of data and drafted manuscript. LB, MAG, FP and MAO edited and revised manuscript and approved final version of manuscript.

Corresponding author

Correspondence to M. Arredondo-Olguín.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briones, L., Andrews, M., Pizarro, F. et al. Expression of genes associated with inflammation and iron metabolism in 3T3-L1 cells induced with macrophages-conditioned medium, glucose and iron. Biometals 31, 595–604 (2018). https://doi.org/10.1007/s10534-018-0108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-018-0108-4

Keywords

Navigation