Skip to main content

Advertisement

Log in

The overview of the deep learning integrated into the medical imaging of liver: a review

  • Review Article
  • Published:
Hepatology International Aims and scope Submit manuscript

Abstract

Deep learning (DL) is a recently developed artificial intelligent method that can be integrated into numerous fields. For the imaging diagnosis of liver disease, several remarkable outcomes have been achieved with the application of DL currently. This advanced algorithm takes part in various sections of imaging processing such as liver segmentation, lesion delineation, disease classification, process optimization, etc. The DL optimized imaging diagnosis shows a broad prospect instead of the pathological biopsy for the advantages of convenience, safety, and inexpensiveness. In this paper, we reviewed the published representative DL-related hepatic imaging works, described the general situation of this new-rising technology in medical liver imaging and explored the future direction of DL development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol 2017;27(21):R1147–R1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Di Tommaso L, et al. Role of liver biopsy in hepatocellular carcinoma. World J Gastroenterol 2019;25(40):6041–6052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ayuso C, et al. Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines. Eur J Radiol 2018;101:72–81

    Article  PubMed  Google Scholar 

  4. Sertorio F, et al. Ultrasonography as first line imaging for the diagnosis of positional plagiocephaly: our experience and literature review. Minerva Pediatr 2019. https://doi.org/10.23736/S0026-4946.19.05424-0

    Article  PubMed  Google Scholar 

  5. Nishida N, et al. Current status and perspectives for computer-aided ultrasonic diagnosis of liver lesions using deep learning technology. Hepatol Int 2019;13(4):416–421

    Article  PubMed  Google Scholar 

  6. Choi KJ, et al. Development and validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT images in the liver. Radiology 2018;289(3):688–697

    Article  PubMed  Google Scholar 

  7. Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 2017;44(4):1408–1419

    Article  CAS  PubMed  Google Scholar 

  8. Ben-Cohen A, Greenspan H. Liver lesion detection in CT using deep learning techniques. In: Handbook of Medical Image Computing and Computer Assisted Intervention, 2020; p. 65–90. https://doi.org/10.1016/B978-0-12-816176-0.00008-9

  9. Waite S, et al. Interpretive error in radiology. AJR Am J Roentgenol 2017;208(4):739–749

    Article  PubMed  Google Scholar 

  10. Chan HP, Samala RK, Hadjiiski LM. CAD and AI for breast cancer-recent development and challenges. Br J Radiol 2020;93(1108):20190580

    Article  PubMed  Google Scholar 

  11. Suzuki K. Overview of deep learning in medical imaging. Radiol Phys Technol 2017;10(3):257–273

    Article  PubMed  Google Scholar 

  12. Sapkota M, Shi X, Xing F, Yang L. Deep convolutional hashing for low-dimensional binary embedding of histopathological images. IEEE J Biomed Health Inf 2019;23(2):805–816

    Article  Google Scholar 

  13. Le EPV, et al. Artificial intelligence in breast imaging. Clin Radiol 2019;74(5):357–366

    Article  CAS  PubMed  Google Scholar 

  14. Sahiner B, et al. Deep learning in medical imaging and radiation therapy. Med Phys 2019;46(1):e1–36

    Article  PubMed  Google Scholar 

  15. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 2019;29(2):102–127

    Article  PubMed  Google Scholar 

  16. Sarıgül M, Ozyildirim BM, Avci M. Differential convolutional neural network. Neural Netw 2019;116:279–287

    Article  PubMed  Google Scholar 

  17. Karim AM, et al. A novel framework using deep auto-encoders based linear model for data classification. Sensors (Basel) 2020;20(21):6378

    Article  Google Scholar 

  18. Movahedi F, Coyle JL, Sejdic E. deep belief networks for electroencephalography: a review of recent contributions and future outlooks. IEEE J Biomed Health Inf. 2018;22(3):642–652

    Article  Google Scholar 

  19. Barak O. Recurrent neural networks as versatile tools of neuroscience research. Curr Opin Neurobiol 2017;46:1–6

    Article  CAS  PubMed  Google Scholar 

  20. Pons E, Braun LM, Hunink MG, Kors JA. Natural language processing in radiology: a systematic review. Radiology 2016;279(2):329–343

    Article  PubMed  Google Scholar 

  21. Min S, Lee B, Yoon S. Deep learning in bioinformatics. Brief Bioinform 2017;18(5):851–869

    PubMed  Google Scholar 

  22. Huan EY, Wen GH. Multilevel and multiscale feature aggregation in deep networks for facial constitution classification. Comput Math Methods Med 2019;2019:1258782

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: an overview and application in radiology. Insights Imaging 2018;9(4):611–629

    Article  PubMed  PubMed Central  Google Scholar 

  24. Biswas M, et al. Symtosis: A liver ultrasound tissue characterization and risk stratification in optimized deep learning paradigm. Comput Methods Programs Biomed 2018;155:165–177

    Article  PubMed  Google Scholar 

  25. Ohn I, Kim Y. Smooth function approximation by deep neural networks with general activation functions. Entropy (Basel) 2019;21(7):627

    Article  Google Scholar 

  26. Soffer S, et al. Convolutional neural networks for radiologic images: a radiologist’s guide. Radiology 2019;290(3):590–606

    Article  PubMed  Google Scholar 

  27. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 2017;39(4):640–651

    Article  PubMed  Google Scholar 

  28. Falk T, et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat Methods 2019;16(1):67–70

    Article  CAS  PubMed  Google Scholar 

  29. Clancy K, et al. Deep learning pre-training strategy for mammogram image classification: an evaluation study. J Digit Imaging 2020;33(5):1257–1265

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jansen MJA, et al. Patient-specific fine-tuning of convolutional neural networks for follow-up lesion quantification. J Med Imaging (Bellingham) 2020;7(6):064003

    Google Scholar 

  31. Ben-Cohen A, et al. Fully convolutional network for liver segmentation and lesions detection. Deep Learn Data Label Med Appl 2016. https://doi.org/10.1007/978-3-319-46976-8_9

    Article  Google Scholar 

  32. Zhang Y, et al. Deep learning initialized and gradient enhanced Level-Set based segmentation for liver tumor from CT images. IEEE Access 2020;8:76056–76068

    Article  Google Scholar 

  33. Fang X, Xu S, Wood BJ, Yan P. Deep learning-based liver segmentation for fusion-guided intervention. Int J Comput Assist Radiol Surg 2020;15(6):963–972

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tang X, et al. Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT. Eur J Nucl Med Mol Imaging 2020;47(12):2742–2752

    Article  PubMed  Google Scholar 

  35. Hu P, et al. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution. Phys Med Biol 2016;61(24):8676–8698

    Article  PubMed  Google Scholar 

  36. Winkel DJ, et al. Validation of a fully automated liver segmentation algorithm using multi-scale deep reinforcement learning and comparison versus manual segmentation. Eur J Radiol 2020;126:108918

    Article  PubMed  Google Scholar 

  37. Marinelli B, et al. Combination of active transfer learning and natural language processing to improve liver volumetry using surrogate metrics with deep learning. Radiol Artif Intell 2019. https://doi.org/10.1148/ryai.2019180019

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ghoniem RM. A novel bio-inspired deep learning approach for liver cancer diagnosis. Information 2020;11(2):80

    Article  Google Scholar 

  39. Halder A, Dey D, Sadhu AK. lung nodule detection from feature engineering to deep learning in thoracic CT images: a comprehensive review. J Digit Imaging 2020;33(3):655–677

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yamakawa M, Shiina T, Nishida N, Kudo M. Computer aided diagnosis system developed for ultrasound diagnosis of liver lesions using deep learning. In: 2019 IEEE International Ultrasonics Symposium (IUS), 2019; p. 2330–2333. https://doi.org/10.1109/ULTSYM.2019.8925698

  41. Schmauch B, et al. Diagnosis of focal liver lesions from ultrasound using deep learning. Diagn Interv Imaging 2019;100(4):227–233

    Article  CAS  PubMed  Google Scholar 

  42. Hassan TM, Elmogy M, Sallam ES. Diagnosis of focal liver diseases based on deep learning technique for ultrasound images. Arab J Sci Eng 2017;42:3127–3140

    Article  Google Scholar 

  43. Durot I, Wilson SR, Willmann JK. Contrast-enhanced ultrasound of malignant liver lesions. Abdom Radiol (NY) 2018;43(4):819–847

    Article  Google Scholar 

  44. Jaspers N, Pfister R, Kinkel H, Michels G. Kontrastmittelsonographie [Contrast-enhanced ultrasound]. Dtsch Med Wochenschr 2012;137(45):2336–2339

    CAS  PubMed  Google Scholar 

  45. Guo L, et al. CEUS-based classification of liver tumors with deep canonical correlation analysis and multi-kernel learning. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2017; p. 1748–1751. https://doi.org/10.1109/EMBC.2017.8037181

  46. Wu K, Chen X, Ding MY. Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound. Optik 2014;125(15):4057–4063

    Article  Google Scholar 

  47. Das A, et al. Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques. Cogn Syst Res 2019;54:165–175

    Article  Google Scholar 

  48. Xu X, et al. Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol 2019;70(6):1133–1144

    Article  PubMed  Google Scholar 

  49. Wang W, et al. Classification of focal liver lesions using deep learning with fine-tuning. In: Proceedings of the 2018 International Conference on digital medicine and image processing 2018; p. 56–60. https://doi.org/10.1145/3299852.3299860

  50. Shi W, et al. Deep learning assisted differentiation of hepatocellular carcinoma from focal liver lesions: choice of four-phase and three-phase CT imaging protocol. Abdom Radiol (NY) 2020;45(9):2688–2697

    Article  Google Scholar 

  51. Hamm CA, et al. Deep learning for liver tumor diagnosis part I: development of a convolutional neural network classifier for multi-phasic MRI. Eur Radiol 2019;29(7):3338–3347

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang C, et al. Deep learning for liver tumor diagnosis part II: convolutional neural network interpretation using radiologic imaging features. Eur Radiol 2019;29(7):3348–3357

    Article  PubMed  PubMed Central  Google Scholar 

  53. Trivizakis E, et al. Extending 2-D convolutional neural networks to 3-D for advancing deep learning cancer classification with application to mri liver tumor differentiation. IEEE J Biomed Health Inf 2019;23(3):923–930

    Article  Google Scholar 

  54. Xiao G, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology 2017;66(5):1486–1501

    Article  CAS  PubMed  Google Scholar 

  55. Reddy DS, Bharath R, Rajalakshmi P. A novel computer-aided diagnosis framework using deep learning for classification of fatty liver disease in ultrasound imaging. In: IEEE 20th International Conference on e-health networking, applications and services 2018; p. 1–5. https://doi.org/10.1109/HealthCom.2018.8531118

  56. Byra M, et al. Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images. Int J Comput Assist Radiol Surg 2018;13(12):1895–1903

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cao W, et al. Application of deep learning in quantitative analysis of 2-dimensional ultrasound imaging of nonalcoholic fatty liver disease. J Ultrasound Med 2020;39(1):51–59

    Article  PubMed  Google Scholar 

  58. Lee JH, et al. Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network. Eur Radiol 2020;30(2):1264–1273

    Article  PubMed  Google Scholar 

  59. Sigrist RMS, et al. Ultrasound elastography: review of techniques and clinical applications. Theranostics 2017;7(5):1303–1329

    Article  PubMed  PubMed Central  Google Scholar 

  60. Colombo S, et al. Head-to-head comparison of transient elastography (TE), real-time tissue elastography (RTE), and acoustic radiation force impulse (ARFI) imaging in the diagnosis of liver fibrosis. J Gastroenterol 2012;47(4):461–469

    Article  PubMed  Google Scholar 

  61. Gatos I, et al. Temporal stability assessment in shear wave elasticity images validated by deep learning neural network for chronic liver disease fibrosis stage assessment. Med Phys 2019;46(5):2298–2309

    Article  PubMed  Google Scholar 

  62. Wang K, et al. Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study. Gut 2019;68(4):729–741

    Article  CAS  PubMed  Google Scholar 

  63. Li Y, et al. A deep learning trial on transient elastography for assessment of liver fibrosis. In: IEEE International Ultrasonics Symposium. 2018; p. 1–4. https://doi.org/10.1109/ULTSYM.2018.8579992

  64. Yip SS, Aerts HJ. Applications and limitations of radiomics. Phys Med Biol 2016;61(13):R150–R166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu Y, et al. MRI-based treatment planning for proton radiotherapy: dosimetric validation of a deep learning-based liver synthetic CT generation method. Phys Med Bio. 2019;64(14):145015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ibragimov B, et al. Combining deep learning with anatomical analysis for segmentation of the portal vein for liver SBRT planning. Phys Med Biol 2017;62(23):8943–8958

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ibragimov B, et al. Automated hepatobiliary toxicity prediction after liver stereotactic body radiation therapy with deep learning-based portal vein segmentation. Neurocomputing 2020;392:181–188

    Article  Google Scholar 

  68. Esses SJ, et al. Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture. J Magn Reson Imaging 2018;47(3):723–728

    Article  PubMed  Google Scholar 

  69. Cho BJ, et al. Automated classification of gastric neoplasms in endoscopic images using a convolutional neural network. Endoscopy 2019;51(12):1121–1129

    Article  PubMed  Google Scholar 

  70. Le Berre C, et al. Application of artificial intelligence to gastroenterology and hepatology. Gastroenterology 2020;158(1):76-94.e2

    Article  PubMed  Google Scholar 

  71. Cho BJ, et al. Prediction of submucosal invasion for gastric neoplasms in endoscopic images using deep-learning. J Clin Med 2020;9(6):1858

    Article  PubMed Central  Google Scholar 

  72. Sbeit W, et al. A comprehensive narrative review on the evolving role of endoscopic ultrasound in focal solid liver lesions diagnosis and management. Diagnostics (Basel) 2020;10(9):688

    Article  CAS  Google Scholar 

  73. Lisotti A, et al. EUS liver assessment using contrast agents and elastography. Endosc Ultrasound 2018;7(4):252–256

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang WY, et al. Endoscopic ultrasound-guided ethanol ablation therapy for tumors. World J Gastroenterol 2013;19(22):3397–3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chua T, et al. Endoscopic ultrasound-guided ablation of liver tumors. Gastrointest Endosc Clin N Am 2019;29(2):369–379

    Article  PubMed  Google Scholar 

  76. ASGE Technology Committee, Trikudanathan G, et al. EUS-guided portal vein interventions. Gastrointest Endosc 2017;85(5):883–888

    Article  Google Scholar 

  77. Bhatia V, et al. Endoscopic ultrasound description of liver segmentation and anatomy. Dig Endosc 2014;26(3):482–490

    Article  PubMed  Google Scholar 

  78. Li YD, et al. Intelligent detection endoscopic assistant: an artificial intelligence-based system for monitoring blind spots during esophagogastroduodenoscopy in real-time. Dig Liver Dis 2021;53(2):216–223

    Article  PubMed  Google Scholar 

  79. Ramalhinho J, et al. A pre-operative planning framework for global registration of laparoscopic ultrasound to CT images. Int J Comput Assist Radiol Surg 2018;13(8):1177–1186

    Article  PubMed  PubMed Central  Google Scholar 

  80. Short RG, Bralich J, Bogaty D, Befera NT. Comprehensive word-level classification of screening mammography reports using a neural network sequence labeling approach. J Digit Imaging 2019;32(5):685–692

    Article  PubMed  Google Scholar 

  81. Xiong J, Xiong Z, Chen K, Jiang H, Zheng M. Graph neural networks for automated de novo drug design. Drug Discov Today 2021;26(6):1382–1393

    Article  CAS  PubMed  Google Scholar 

  82. Li W, Liu K, Zhang L, Cheng F. Object detection based on an adaptive attention mechanism. Sci Rep 2020;10(1):11307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Fourment M, Darling AE. Evaluating probabilistic programming and fast variational Bayesian inference in phylogenetics. PeerJ 2019;7:e8272

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFE0195200), National Natural Science Foundation of China (No. 81873156), The Leading Talent of Hundred, Thousand and Ten Thousand Project of Liaoning Province (XLYC1905013).

Funding

This work was supported by the National Key Research and Development Program of China (No. 2018YFE0195200), National Natural Science Foundation of China (No. 81873156), The Leading Talent of Hundred, Thousand and Ten Thousand Project of Liaoning Province (XLYC1905013).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this paper. Material preparation and article collection were performed by Kailai Xiang and Baihui Jiang. Reviewing and editing was performed by Dong Shang. The first draft of the manuscript was written by Kailai Xiang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dong Shang.

Ethics declarations

Conflicts of interest/Competing interests

Kailai Xiang, Baihui Jiang, and Dong Shang have declared that they have no competing interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, K., Jiang, B. & Shang, D. The overview of the deep learning integrated into the medical imaging of liver: a review. Hepatol Int 15, 868–880 (2021). https://doi.org/10.1007/s12072-021-10229-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12072-021-10229-z

Keywords

Navigation