Skip to main content

Advertisement

Log in

Quantification of the energy efficiency gap in the Swedish residential sector

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

We present a method for quantifying the energy efficiency gap ex ante. To do this, we define the energy efficiency gap as being the difference between the ex ante market and techno-economic energy savings potentials. The estimation of market potential is based on top-down (econometric) modelling of energy demand using data from the period 1970–2005. The techno-economic estimates are made using a bottom-up building stock model (ECCABS) to assess the effects and cost-efficiency of various energy efficiency measures. Common to these two modelling approaches are two scenarios of energy prices, which differ only with respect to the carbon tax component. We implement the method for the case of useful energy demand for space and water heating in the Swedish residential sector up to 2030. In comparison to the level of energy use in 2005 (74 TWh), the top-down model predicts for 2030 reductions in demand for the two price scenarios of 17 and 21 TWh respectively. The bottom-up model predicts corresponding reductions in demand of 25 and 31 TWh respectively. Thus, there is an energy efficiency gap calculated of at least 8 TWh in 2030. An implicit discount rate of 10 % would render the results from the bottom-up modelling identical to those from the top-down modelling. The presence of the energy efficiency gap indicates that there is a need for enhanced policies in order to make future reductions in energy demand reach the levels predicted by the bottom-up modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In this review, Gillingham and Palmer describe recent research which uses empirical analysis to investigate, inter alia, the impacts of energy efficiency programmes on heterogeneous consumer types in order to help design the ‘first-best’ policy interventions that would address behavioral anomalies.

  2. Although some well-known bottom-up and hybrid models, such as Poles, Primes and TIMES, take into account the implicit discount rate, they do so in terms of establishing real-world scenarios, as opposed to techno-economic potentials.

  3. For example, in a meta-analysis of 42 utility conservation programmes, Nadel and Keating (1991) found that actual ex post energy savings from residential retrofit programmes ranged from 15 to 117 % of ex ante estimates.

  4. The energy prices and personal income levels must be in the national currencies, in the present case SEK, as householders would have reacted to the dynamics of the currency. However, for comparison purposes, the energy price data are presented in Euro in Table 1.

  5. As stated previously, the present work assumes a constant floor area for the model period, i.e. no construction, demolition or house extensions are considered.

  6. From 1997 to 2005, electricity use for space and water heating is divided into that which is used to power heat pumps and that which is used for direct heating. This is done using data on the number of dwellings that have heat pumps installed (SVEP 2013). For this category, useful energy for space and water heating is assumed to be 1.35 times the level of input electricity (Profu 2013).

  7. As useful energy use is examined in this paper, the terms energy saving measure and energy conservation measure have the same meaning.

  8. As the name suggests, the 450 scenario is one in which the concentrations of greenhouse gases in the atmosphere are stabilised at 450 ppm of CO2equivalent by year 2030.

  9. As the WEO data are given in US dollars, it is first converted to Euro for use in the ENPAC model and then to SEK for modelling purposes using the exchange rates for Year 2005.

  10. While there are other methods of undertaking top-down and bottom-up modelling, e.g. computable general equilibrium for the former and optimization for the latter, the issues that are described below would be similar for these alternative approaches.

References

  • Allcott, H., & Greenstone, M. (2012). Is there an energy efficiency gap? Journal of Economic Perspectives. doi:10.1257/jep.26.1.3.

    Google Scholar 

  • Axelsson E., & Harvey, S. (2010). Scenarios for assessing profitability and carbon balances of energy investments in industry, Göteborg: Chalmers University of Technology, ISBN: 978-91-978585-0-2.- 42 s.

  • Backlund, S., Thollander, P., Palm, J., & Ottosson, M. (2012). Extending the energy efficiency gap. Energy Policy. doi:10.1016/j.enpol.2012.08.042.

    Google Scholar 

  • BAFA, (2010a). Aufkommen und Export von Erdgas [Supply and export of Natural Gas]. Bundesamt für Wirtschaft und Ausfuhrkontrolle Available from: http://www.bafa.de/bafa/de/energie/erdgas/index.html In German.

  • BAFA, (2010b). Drittlandskohlepreis [Third party country coal prices]. Bundesamt für Wirtschaft und Ausfuhrkontrolle. Available from: http://www.bafa.de/bafa/de/energie/steinkohle/drittlandskohlepreis/index.html In German.

  • BFR, (1996). Energieffektivisering. Sparmöjligheter och investeringar för el- och värmeåtgarder i bostäder och lokaler. [Energy Efficiency. Savings and investment opportunities for electricity and heating in dwellings and buildings] Anslagsrapport A1:1996, BFR Byggforskningsrådet, Stockholm, Sweden. In Swedish.

  • Booth, A. T., Choudhary, R., & Spiegelhalter, D. J. (2012). Handling uncertainty in housing stock models. Building and Environment. doi:10.1016/j.buildenv.2011.08.016.

    Google Scholar 

  • Dalenbäck J. O., Görasson A., Lennart J., Nilson A., Olsson D., & Pettersson B. (2005). Åtgärder för ökad energieffektivisering i bebyggelse [Measures for increased energy efficiency in buildings]. Report CEC 2005:1,Chalmers EnergiCentrum–CEC, Chalmers University of Technology, Gothenburg, Sweden. In Swedish.

  • EC, (2006). Action plan for energy efficiency: realising the potential. COM(2006)545. European Commission.

  • EC, (2008). European energy and transport trends to 2030 update 2007. European Commission Directorate–General for Energy and Transport. European Commission, ISBN 978-92-79-07620-6; 2008.

  • EC, (2014). Energy prices and costs in Europe, COM(2014) 21 /2. European Commission.

  • Gerarden, T.D., Newell, R.G., Stavins, R.N., & Stowe, R.C. (2014). An assessment of the energy-efficiency gap and its implications for climate-change policy. Discussion Paper ES 2014-3, Harvard Project on Climate Agreements. Cambridge, Mass. Available at: http://belfercenter.ksg.harvard.edu/files/es-03_gerarden-etal2.pdf

  • Gillingham, K., & Palmer, K. (2014). Bridging the energy efficiency gap: policy insights from economic theory and empirical evidence. Review of Environmental Economics and Policy. doi:10.1093/reep/ret021.

    Google Scholar 

  • Giraudet, L.-G., Guivarch, C., & Quirion, P. (2012). Exploring the potential for energy conservation in French households through hybrid modeling. Energy Economics. doi:10.1016/j.eneco.2011.07.010.

    Google Scholar 

  • Gujarati, D. N. (2006). Essentials of econometrics. Boston: Mc Graw-Hill.

    Google Scholar 

  • Göransson, A., & Pettersson. B. (2008). Energieffektiviseringspotential i bostäder och lokaler. Med fokus på effektiviseringsåtgärder 2005–2016. [Energy efficiency potential in dwellings and buildings. With focus on efficiency measures]. Report - CEC 2008:3, Chalmers EnergiCentrum–CEC, Chalmers University of Technology, Gothenburg, Sweden. In Swedish.

  • Haas, R., & Schipper, L. (1998). Residential energy demand in OECD-countries and the role of irreversible efficiency improvements. Energy Economics. doi:10.1016/S0140-9883(98)00003-6.

    Google Scholar 

  • Hjortsberg, M. (2011). Description of the Swedish building stock using material Swedish statistical survey of 1800 buildings. Report. Swedish National Board of Housing, Building and Planning. Available at: http://www.boverket.se/Global/Om_Boverket/Dokument/about_boverket/betsi_study/building_stock.pdf.

  • IEA. (1997). Indicators of energy use and efficiency—understanding the link between energy and human activity. Paris: International Energy Agency.

    Google Scholar 

  • IEA. (2007). Mind the gap, quantifying principal-agent problems in energy efficiency. Paris: International Energy Agency.

    Google Scholar 

  • IEA. (2008). Energy prices and taxes statistics. OECD iLibrary. doi:10.1787/eneprice-data-en.

    Google Scholar 

  • IEA, (2009). World energy outlook 2009. Paris, France: OECD/IEA : ISBN: 978-92-64-06130-9.

  • IEA. (2010). Energy technology perspectives 2010. Paris: International Energy Agency.

    Google Scholar 

  • IIASA, (2010). GAINS online database. Laxenburg, Austria: International Institute for Applied Systems Analysis. Available at: http://gains.iiasa.ac.at/index.php/home-page/241-online-access-to-gains

  • ISIS, (2012). MURE II Database on energy efficiency policies and measures. Rome: ISIS. Available at: http://www.muredatabase.org/

  • Jaccard, M. (2004). Greenhouse gas abatement: controversies in cost assessment. Encyclopaedia of Energy, 3, doi:10.1016/B0-12-176480-X/00530-1

  • Jaccard, M. (2009). Combining top-down and bottom-up in energy economy models. In International Handbook on the Economics of Energy (Chapter 13). Edward Elgar Publishing Limited: Cheltenham.

  • Jacobsen, H. K. (1998). Integrating the bottom-up and top-down approach to energy–economy modeling: the case of Denmark. Energy Economics. doi:10.1016/S0140-9883(98)00002-4.

    Google Scholar 

  • Jaffe, A. B., & Stavins, R. N. (1994). The energy efficiency gap—what does it mean? Energy Policy. doi:10.1016/0301-4215(94)90138-4.

    MATH  Google Scholar 

  • Jaffe, A., Newell, R., & Stavins, R. (2004). Economics of energy efficiency. Encyclopaedia of Energy, 2, doi:10.1016/B0-12-176480-X/00228-X.

  • Joskow, P. L. (1995). Utility-subsidized energy-efficiency programs. Annual Review of Energy and the Environment. doi:10.1146/annurev.eg.20.110195.002522.

    Google Scholar 

  • Karlsson, C. (2013). Energy efficiency, Swedish Energy Agency. Presentation given to the 6th Passive House Conference in the Nordic Countries (Passivhushorden), Gothenburg, Sweden.

  • Kavgic, M., Mavrogianni, A., Mumovic, D., Summerfield, A., Stevanovic, Z., & Djurovic-Petrovic, M. (2010). A review of bottom-up building stock models for energy consumption in the residential sector. Building and Environment. doi:10.1016/j.buildenv.2010.01.021.

    Google Scholar 

  • Koomey, J. G. (2000). Avoiding ‘the big mistake’in forecasting technology adoption. Conference paper for Energex Conference. Available at: http://enduse.lbl.gov/Info/LBNL-45383.pdf.

  • Koopmans, C. C., & te Velde, D. W. (2001). Bridging the energy efficiency gap: using bottom-up information in a top-down energy demand model. Energy Economics. doi:10.1016/S0140-9883(00)00054-2.

    Google Scholar 

  • Levine, M., Ürge-Vorsatz, D., Blok, K., Geng, L., Harvey, D., Lang, S., Levermore, G., Mongameli Mehlwana, A., Mirasgedis, S., Novikova, A., Rilling, J., & Yoshino, H. (2007). Residential and commercial buildings. In B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

  • Mata, É., Sasic Kalagasidis, A., & Johnsson, F. (2013a). A modelling strategy for energy, carbon, and cost assessments of building stocks. Energy and Buildings. doi:10.1016/j.enbuild.2012.09.037.

    Google Scholar 

  • Mata, E., Sasic Kalagasidis, A., & Johnsson, F. (2013b). Energy usage and potential for energy saving measures in Swedish households. Energy Policy. doi:10.1016/j.enpol.2012.12.023.

    Google Scholar 

  • Mata, E., Sasic Kalagasidis, A., & Johnsson, F. (2014). Cost-effective retrofitting of Swedish residential buildings: effects of energy price developments and discount rates. Energy Efficiency, doi: 10.1007/s12053-014-9287-1.

  • Mattsson, B. (2011). Costs for reducing the energy demand in the Swedish building stock according to national energy targets. Report. Swedish National Board of Housing, Building and Planning. Available at: http://www.boverket.se/Global/Om_Boverket/Dokument/about_boverket/betsi_study/energy.pdf.

  • Mundaca, L., Neij, L., Worrell, E., & McNeil, M. (2010). Evaluating energy efficiency policies with energy-economy models. Annual Review of Environment and Resources. doi:10.1146/annurev-environ-052810-164840.

    Google Scholar 

  • Nadel, S., & Keating, K., (1991). Engineering estimates vs. impact evaluation results: how do they compare and why? Research Report U915. American Council for an Energy-Efficient Economy: Washington, D.C. Available from: http://www.aceee.org/research-report/u915.

  • NBHBP, (2009). Så mår våra hus [This is how our house feels. Report of government task on buildings physical charachteristics]. Redovisning av regeringsuppdrag beträffande byggnaders tekniska utformning m.m.. Swedish National Board of Housing, Building and Planning (NBHBP, Boverket in Swedish), Karlskrona, Sweden. In Swedish.

  • NBHBP, (2010). Energi i bebyggelsen—tekniska egenskaper och beräkningar [Energy in buildings—technical features and calculations]. Resultat från projektet BETSI. Swedish National Board of Housing, Building and Planning (NBHBP, Boverket in Swedish), Karlskrona, Sweden. In Swedish.

  • NBHBP, (2013). Optimala kostnader för energieffektivisering—underlag enligt Europaparlamentets och rådets direktiv 2010/31/EU ombyggnaders energiprestanda, Slutrapport Rapport 2013:2 [Cost-optimality for energy efficiency, report carried out for EPBD recast], REGERINGSUPPDRAG N2012/2823/E. Swedish National Board of Housing, Building and Planning (NBHBP, Boverket in Swedish), Karlskrona, Sweden. In Swedish.

  • Nordhaus, W. D. (1991). The cost of slowing climate change: a survey. The Energy Journal. doi:10.5547/ISSN0195-6574-EJ-Vol12-No1-4.

    Google Scholar 

  • Nyboer J. (1997). Simulating evolution of technology: an aid to energy policy analysis. Thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Simon Frasier University, Canada. Available at: http://www.emrg.sfu.ca/media/publications/1997/Thesis.pdf

  • Nässén, J., Sprei, F., & Holmberg, J. (2008). Stagnating energy efficiency in the Swedish building sector—economic and organisational explanations. Energy Policy. doi:10.1016/j.enpol.2008.07.018.

    Google Scholar 

  • Ó Broin, E., Mata, E., Göransson, A., & Johnsson, F. (2013). The effect of improved efficiency on energy savings in EU-27 buildings. Energy. doi:10.1016/j.energy.2013.01.016.

    Google Scholar 

  • Ó Broin E., Nässén, J., Johnsson F. (2015). The influence of price and non-price effects on demand for heating in the EU residential sector. Energy, doi:10.1016/j.energy.2014.12.003

  • Odyssee Database, (2009). Odyssee Database. Enerdata, Grenoble, France. Available from: http://www.odyssee-indicators.org/

  • OPEC, (2010). Opec Monthly Oil Report. Available from: http://www.opec.org/opec_web/en/publications/338.htm.

  • Persson, A., Göransson, A., Gudbjerg, E. (2008). Bridge over troubled water—spanning the energy efficiency gap, ECEEE Summer Study Proceedings. Available from: http://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies

  • Profu, (2013). Beräkningar av nettovärme i redovisningsverktyget HEFTIG [Calculations of Useful Energy Demand using the HEFTIG auditing tool]. Profu Consultancy, Mölndal, 43134 Sweden. In Swedish.

  • Rivers, N., & Jaccard, M. (2005). Combining top-down and bottom-up approaches to energy-economy modeling using discrete choice methods. The Energy Journal. doi:10.5547/ISSN0195-6574-EJ-Vol26-No1-4.

    Google Scholar 

  • Sanstad, A. H., & Greening, L. A. (1998). Economic models for climate policy analysis: a critical discussion. Environmental Modeling & Assessment. doi:10.1023/A:1019002620369.

    Google Scholar 

  • Schipper, L. (2010). Personal correspondence with author.

  • Sorrell, S., O'Malley, E., Schleich, J., & Scott, S. (2004). The economics of energy efficiency: barriers to cost-effective investments. Cheltenham: Edward Elgar Publishing Limited.

    Google Scholar 

  • SOU 2008:110, (2008). Vägen till ett energieffektivare Sverige [The road to a more energy efficient Sweden], Statens Offentliga Utredningar [Public enquiry]. In Swedish.

  • Summerfield, A. J., & Lowe, R. (2012). Challenges and future directions for energy and buildings research. Building Research & Information. doi:10.1080/09613218.2012.693839.

    Google Scholar 

  • Swedish Energy Agency, (2009). Mätning av kall-och varmvattenanvändning i 44 hushåll [Measurement of cold and warm water use in 44 households] - Delrapport i Swedish Energy Agencyens projekt Förbättrad energistatistik i bebyggelsen och industrin, ER 2009:26. Eskilstuna, Sweden. In Swedish.

  • Swedish Energy Agency, (2011). Facts and figures—energy in Sweden 2011. Report. Swedish Energy Agency. Available at: http://www.energimyndigheten.se/Global/Engelska/Facts%20and%20figures/Energy%20in%20Sweden%20facts%20and%20figures%202011%20updated%2020120514.pdf.

  • Thunman, H. (2014). Personal correspondence with author.

  • Train, K. (1985). Discount rates in consumers’ energy-related decisions: a review of the literature. Energy. doi:10.1016/0360-5442(85)90135-5.

    Google Scholar 

  • Tsvetanov, T., & Segerson, K. (2013). Re-evaluating the role of energy efficiency standards: a behavioral economics approach. Journal of Environmental Economics and Management. doi:10.1016/j.jeem.2013.04.006.

  • SVEP (2013). Värmepumpförsäljningen i Sverige 1981-2012 [Sales of Heat-pumps in Sweden 1981-2012]. SVEP Information & Service AB, 11853 Stockholm, Sweden. In Swedish.

  • Swan, L. G., & Ugursal, V. I. (2009). Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renewable and Sustainable Energy Reviews. doi:10.1016/j.rser.2008.09.033.

    Google Scholar 

  • Wilson, D., & Swisher, J. (1993). Exploring the gap. Top-down versus bottom-up analyses of the cost of mitigating global warming. Energy Policy. doi:10.1016/0301-4215(93)90247-D.

    Google Scholar 

  • Ürge-Vorsatz, D., & Novikova, A. (2008). Potentials and costs of carbon dioxide mitigation in the world’s buildings. Energy Policy. doi:10.1016/j.enpol.2007.10.009.

    Google Scholar 

  • Weber, L. (1997). Some reflections on barriers to the efficient use of energy. Energy Policy. doi:10.1016/S0301-4215(97)00084-0.

    Google Scholar 

  • Wilk, R. R., & Wilhite, H. L. (1985). Why don’t people weatherize their homes? An ethnographic solution. Energy. doi:10.1016/0360-5442(85)90093-3.

    MATH  Google Scholar 

  • Yang, W., & Kohler, N. (2008). Simulation of the evolution of the Chinese building and infrastructure stock. Building Research & Information. doi:10.1080/09613210701702883.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eoin Ó Broin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ó Broin, E., Mata, É., Nässén, J. et al. Quantification of the energy efficiency gap in the Swedish residential sector. Energy Efficiency 8, 975–993 (2015). https://doi.org/10.1007/s12053-015-9323-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-015-9323-9

Keywords

Navigation