Skip to main content

Advertisement

Log in

Estimating a threshold price for CO2 emissions of buildings to improve their energy performance level: case study of a new Spanish home

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Energy consumption in homes produces CO2. In many countries, building regulations are being set to enable energy efficiency performance levels to be issued. In Spain, there is a regulated procedure to certify the energy performance of buildings according to their CO2 emissions. Consequently, some software tools have been designed to simulate buildings and to obtain their energy consumption and CO2 emissions. In this paper, investment, maintenance and energy consumption costs are calculated for different energy performance levels and for various climatic zones in a single-family home. According to the results, for buildings to be more energy-efficient, higher construction and maintenance costs are implied, which are not compensated by lower energy costs. Therefore, under current conditions, economic criteria do not support the improvement of a dwelling’s energy efficiency. Among the possible measures to promote energy efficiency, a price for CO2 emissions is suggested, including the social cost in the analysis. For this purpose, the cost-optimal methodology is used. In different scenarios for the discount rate and energy prices, various prices for CO2 are obtained, depending on climatic zone and energy performance level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Eurostat European Commission, Instituto de Diversificación y Ahorro de Energía, Ministerio de Industria, Energía y Turismo 2011, Proyecto SECH-SPAHOUSEC, Análisis del consumo energético del sector residencial en España, Informe Final, Madrid

References

  • AICIA. (2009). Escala de calificación energética. Edificios de nueva construcción. Madrid: Instituto para la Diversificación y Ahorro de la Energía, Ministerio de Industria, Turismo y Comercio.

    Google Scholar 

  • Al-Homoud, M. S. (2005). Performance characteristics and practical applications of common building thermal insulation materials. Building and Environment, 40(3), 353–360.

    Article  Google Scholar 

  • Amecke, H. (2012). The impact of energy performances certificates: a survey of German home owners. Energy Policy, 46, 4–14.

    Article  Google Scholar 

  • Andaloro, A., Salomone, R., Ioppolo, G., & Andaloro, L. (2010). Energy certification of buildings: a comparative analysis of progress towards implementation in European countries. Energy Policy, 38(10), 5840–5866.

    Article  Google Scholar 

  • Annunziata, E., Frey, M., & Rizzi, F. (2013). Towards nearly zero-energy buildings: the state-of-art of national regulations in Europe. Energy, 57, 125–133. doi:10.1016/j.energy.2012.11.049.

    Article  Google Scholar 

  • Audenaert, A., De Boeck, L., & Roelants, K. (2010). Economic analysis of the profitability of energy-saving architectural measures for the achievement of the EPBD-standard. Energy, 35(7), 2965–2971.

    Article  Google Scholar 

  • Bertrán, A. (2009). Las mediciones en las obras adaptadas al CTE (4th ed.). Granada: Editorial Jorge Loring S.I.

    Google Scholar 

  • Brathal, D., & Langemo, M. (2004). Facilities management: a guide for total workplace design and management. Grand Forks: Knight Printing.

    Google Scholar 

  • Brown, D. W. (1996). Facility maintenance: the manager’s practical guide and handbook. New York: AMACOM American Management Association. New York, NY 10019.

    Google Scholar 

  • Concerted Action EPBD (2008). Implementation of the energy performance of buildings directive. Country reports 2008. Brussels: Directorate General for Energy and Transport, European Commission (available at www.epbd.ca.eu and www.buildup.eu).

  • Concerted Action EPBD (2011). Implementing the energy performance of buildings directive. Country reports 2011. Brussels: European Union (available at www.epbd.ca.eu and www.buildup.eu).

  • Davies, H., & Wyatt, D. (2004). Appropriate use or method for durability and service life prediction. Building Research and Information, 32(6), 552–553.

    Article  Google Scholar 

  • Dresner, S., & Ekins, P. (2006). Economic instruments to improve UK home energy efficiency without negative social impacts. Fiscal Studies, 27(1), 47–74.

    Article  Google Scholar 

  • Drury, C. (2008). Management and cost accounting, 7th ed. London.

  • Eurostat European Comission, Instituto de Diversificación y Ahorro de Energía (IDAE), Ministerio de Industria, Energía y Turismo (2011). Proyecto SECH-SPAHOUSEC. Análisis del consumo energético del sector residencial en España. Informe Final. Madrid.

  • Fraunhofer Institute for Systems and Innovation Research ISI (Germany) (2012). Financing the energy efficient transformation of the building sector in the EU. Lessons from the ODYSSEE-MURE project.

  • Garrido, N., Almecija, J. C., Folch, C., Martínez, I. (2011). Certificación energética de edificios. Grupo de Estudios de Energía para la Sostenibilidad (CEES). Cátedra Unesco Sostenibilidad, Universitat Politècnica de Catalunya. (Available at: upcommons.upc.edu/e-prints/bitstream/2117/11820/1/GAS Natural_090406.pdf).

  • Gómez, J. M., & Esteban, M. A. (2010). Sostenibilidad en la edificación. Comparación de dos tipologías constructivas. Rendimiento de los recursos. Ingeniería de Edificación Universitat Politècnica de Catalunya. (Available at: upcommons.upc.edu/pfc/bitstream/2099.1/…/1/PFG_Completo.pdf).

  • Gram-Hanssen, K., Bartiaux, F., Michael Jensen, O., & Cantaert, M. (2007). Do homeowners use energy labels? A comparison between Denmark and Belgium. Energy Policy, 35(5), 2879–2888.

    Article  Google Scholar 

  • Institut de Tecnologia de la Construcció de Catalunya (ITEC) (1991a). Manual de uso y conservación de la vivienda. COAAT Principado de Asturias. Simancas Ediciones S.A. Valladolid.

  • Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1991b). Manteniment de l’edifici. Fitxes (1st ed.). Badalona: Gràfiques Pacífic.

    Google Scholar 

  • Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1991c). Manteniment instal.lacions. Fitxes (1st ed.). Badalona: Gràfiques Pacífic.

    Google Scholar 

  • Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1991d). Manteniment urbanització. Fitxes (1st ed.). Badalona: Gràfiques Pacífic.

    Google Scholar 

  • Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1994). L’actualitat i el cost del manteniment en edificis d’habitatge. Guia pràctic (1st ed.). Barcelona: Gama S.L. Servicios editoriales.

    Google Scholar 

  • Institut de Tecnologia de la Construcció de Catalunya (ITEC). (1996). Ús i manteniment de l’habitatge. Quadern de l’usuari (1st ed.). Zaragoza: Gràfiques Cometa.

    Google Scholar 

  • Institut de Tecnologia de la Construcció de Catalunya (ITEC) (1997). La vivienda: Manual de uso y mantenimient, COAAT de Cantabria. 1ª ed.

  • Institut de Tecnologia de la Construcció de Catalunya (ITEC) (1999). La vivienda: Manual de uso y mantenimiento, COAAT Principado de Asturias. 2ª ed. Simancas Edicionas S.A. Valladolid.

  • Instituto de Diversificación y Ahorro de Energía (IDAE), Ministerio de Industria, Turismo y Comercio (MITYC) (2010). Guía Técnica: Condiciones climáticas exteriores de proyecto, (available at: http://www.minetur.gob.es/energia/desarrollo/eficienciaenergetica/rite/reconocidos/reconocidos/condicionesclimaticas.pdf).

  • Instituto Eduardo Torroja de Ciencias de la Construcción (IETCC) (2010). Catálogo de Elementos Constructivos del Código Técnico, versión CAT-EC-v06.3-MARZO10. Madrid.

  • Jáber-López, J. T., Valencia-Salazar, I., Peñalvo-López, E., Álvarez-Bel, C., Rivera-López, R., Merino-Hernández, E. (2011). Are energy certification tools for buildings effective? A Spanish case study, Proceedings of the 2011 3rd International Youth Conference on Energetics. Leiria, July 7–9.

  • Johnstone, I. M. (2001a). Energy and mass flows of housing: a model and example. Building and Environment, 36, 27–41.

    Article  MathSciNet  Google Scholar 

  • Johnstone, I. M. (2001b). Energy and mass flows of housing: estimating mortality. Building and Environment, 36, 43–51.

    Article  MathSciNet  Google Scholar 

  • Kaiser, H. H. (2001). The facilities audit. A process for improving facilities conditions. Arlington: Kirby Lithographic. APPA. The Association of Higher Education Facilities Officers.

    Google Scholar 

  • Kjaerbye, V. H. (2008). Does energy label on residential housing cause energy savings? AKF, Danish Institute of Governmental Research.

    Google Scholar 

  • La Roche, P. (2010). Calculating green house emissions for houses: analysis of the performance of several carbon counting tools in different climates. Informes de la Construcción, 62(517), 61–80.

    Article  Google Scholar 

  • Larsen, B. M., & Nebakken, R. (1997). Norwegian emissions of CO2 1987–1994. Environmental and Resource Economics, 9, 275–290.

    Google Scholar 

  • Laustsen, J. (2008). Energy efficiency requirements in building codes, energy efficiency policies for new buildings. Paris: International Energy Agency information paper.

    Google Scholar 

  • Linares, P., & Labandeira, X. (2010). Energy efficiency: economics and policy. Journal of Economic Surveys, 24(3), 573–592.

    Google Scholar 

  • Liska, R. W. (2000). Means facilities maintenance standards. Kingston: R.S. Means Company, Inc. Construction Publishers & Consultants.

    Google Scholar 

  • Majcen, D., Itard, H., & Visscher, H. (2013). Theoretical vs. actual energy consumption of labelled dwellings in the Netherlands: discrepancies and policy implications. Energy Policy, 54, 125–136.

    Article  Google Scholar 

  • Mercader, M. P., Olivares, M., & Ramírez de Arellano, A. (2012). Modelo de cuantificación del consumo energético en edificación. Informes de la Construcción, 62(308), 567–582.

    Google Scholar 

  • Ministry of Development of Spain. Directorate for Architecture, Housing and Planning. Report on cost optimal calculations and comparison with the current and future energy performance requirements of buildings in Spain. Version 1.1, 7th June 2013.

  • Pérez-Lombard, L., Ortiz, J., & González, R. (2009). A review of benmarching, rating and labelling concepts within the framework of building energy certification schemes. Energy and Buildings, 41(3), 272–278.

    Article  Google Scholar 

  • Piper, J. E. (1995). Handbook of facility management: tools and techniques, formulas and tables. Upper Saddle River: Prentice Hall Inc.

    Google Scholar 

  • Popescu, D., Bienert, S., Schützenhofer, C., & Boazu, R. (2012). Impact of energy efficiency measures on the economic value of buildings. Applied Energy, 89(1), 454–463.

    Article  Google Scholar 

  • Ramírez de Arellano, A. (2004). Presupuestación de obras. 3ª ed. Universidad de Sevilla. Secretariado de Publicaciones. Colección Manuales Universitarios, 37.

  • Rodríguez-González, A. B., Vinagre-Díaz, J. J., Caañamo, A. J., & Wilby, M. R. (2011). Energy and buildings, 43(4), 980–987.

    Article  Google Scholar 

  • Ruá, M. J., & Guadalajara, N. (2013). Application of compromise programming to a semi-detached housing development in order to balance economic and environmental criteria. Journal of the Operational Research Society, 64, 459–468.

    Article  Google Scholar 

  • Ruá, M. J., & Guadalajara, N. (2014). Using the building energy rating software for mathematically modelling operation costs in a simulated home. International Journal of Computer Mathematics. doi:10.1080/00207160.2014.892588.

    Google Scholar 

  • Ruá, M. J., & López-Mesa, B. (2012). Certificación energética de edificios en España y sus implicaciones económicas. Informes de la Construcción, 64(527), 307–318.

    Article  Google Scholar 

  • Rudbeck, C. (2002). Service life of building envelope components: making it operational in economical assessment. Construction and Building Materials, 16(2), 83–89.

    Article  Google Scholar 

  • Ruiz, M. C., & Romero, E. (2011). Energy saving in the conventional design of a Spanish house using thermal simulation. Energy and Building, 43(11), 3226–3235.

    Article  Google Scholar 

  • Sanstad, A. H., Blumstein, C., & Stoff, S. E. (1995). How high are option values in energy-efficiency investments? Energy Policy, 23(9), 739–743.

    Article  Google Scholar 

  • Sumner, J., Bird, L., Smith, H. (2009). Carbon taxes: a review of experience and policy design consideration. Technical Report NREL/TP-6A2-47312. National Renewable Energy Laboratory. US Department of Energy.

  • Tuominen, P., Forsström, J., & Honkatukia, J. (2013). Economic effects of energy efficiency improvements in the Finnish building stock. Energy Policy, 52, 181–189.

    Article  Google Scholar 

  • Ucar, A., & Balo, F. (2009). Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Applied Energy, 86(5), 730–736.

    Article  Google Scholar 

  • Universidad Politécnica De Madrid. Departamento de Construcción y Vías Rurales (2009). Evaluación de los costes constructivos y consumos energéticos derivados de la calificación energética de viviendas. Precost&E. Fase1.

  • Uzsilaityte, L., & Martinaitis, V. (2010). Search for optimal solution of public building renovation in terms of life cycle. Journal of Environmental Engineering and Landscape Management, 18(2), 102–110.

    Article  Google Scholar 

  • Verbruggen, A. (2012). Financial appraisal of efficiency investments: why the good may be the worst enemy of the best. Energy Efficiency, 5, 571–582.

    Article  Google Scholar 

Legislative references

  • Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive 2010/21/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology framework for calculating cost-optimal levels of minimum energy performance requirements for buildings and buildings elements.

  • Decree 35/01 of 9 March: measures governing the use and maintenance of building in the Balearic Islands.

  • Decree 38/2004 of 2 July: regulations for the Building Book in La Rioja.

  • Decree 158/1997 of 8 July: regulations for the Building Book of existing housing and creating a program for the conservation of buildings in Catalonia.

  • Regional Decree 322/2000 of 2 October: Building Book regulations in Navarre.

  • Decree 349/1999 of 30 December: Building Book regulations.

  • Directive 2002/91/EC of 16 December 2002: energy efficiency in buildings.

  • 2010/31/UE Directive of the European Parliament and the Council of 19 May 2010 on energy efficiency in buildings.

  • Decree 14/02/02 approving the Building Book in Murcia.

  • ECO/805/2003 Order of 27 March on valuation of property and financial regulations.

  • European Commission. Guidelines accompanying Commission Delegated Regulation (EU) No 244/2012 of 16 January 2012 supplementing Directive 2010/21/EU of the European Parliament and of the Council on the energy performance of buildings by establishing a comparative methodology framework for calculating cost-optimal levels of minimum energy performance requirements for buildings and buildings elements. International Valuation Standards (IVS) 2011, IVS 230.

  • Royal Decree 1777/2004 of 30 July: approving income tax regulations.

  • Royal Decree 314/2006 of 19 October: approving the technical building code.

  • Royal Decree 47/2007 of 19 January: basic procedure for certification of energy efficiency in new buildings.

  • Royal Decree 1027/2007 of 20 July: regulation of thermal installations in buildings

  • Royal Decree 235/2013 of 5 April: basic procedure for certification of energy efficiency in buildings.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María José Ruá.

Appendix

Appendix

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruá, M.J., Guadalajara, N. Estimating a threshold price for CO2 emissions of buildings to improve their energy performance level: case study of a new Spanish home. Energy Efficiency 8, 183–203 (2015). https://doi.org/10.1007/s12053-014-9286-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-014-9286-2

Keywords

Navigation