Skip to main content

Advertisement

Log in

Electromagnetic and neutron emissions from brittle rocks failure: Experimental evidence and geological implications

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

It has been observed energy emission in the form of electromagnetic radiation, clearly indicating charge redistribution, and neutron bursts, necessarily involving nuclear reactions, during the failure process of quasi-brittle materials such as rocks, when subjected to compression tests. The material used is Luserna stone, which presents a very brittle behaviour during compression failure. The observed phenomenon of high-energy particle emission, i.e., electrons and neutrons, can be explained in the framework of the superradiance applied to the solid state, where individual atoms lose their identity and become part of different plasmas, electronic and nuclear. Since the analysed material contains iron, it can be conjectured that piezonuclear reactions involving fission of iron into aluminum, or into magnesium and silicon, should have occurred during compression damage and failure. These complex phenomenologies are confirmed by Energy Dispersive X-ray Spectroscopy (EDS) tests conducted on Luserna stone specimens, and found additional evidences at the Earth’s Crust scale, where electromagnetic and neutron emissions are observed just in correspondence with major earthquakes. In this context, the effects of piezonuclear reactions can be also considered from a geophysical and geological point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K 1983 Strong motion seismology, In Earthquakes: Observation, theory and interpretation, H Kanamori and E Boschi (eds) (Amsterdam: North-Holland Pub. Co.)

  • Anbar A D 2008 Elements and evolution. Science 322: 1481–1482

    Article  Google Scholar 

  • Arata Y and Zhang Y 1995 Achievement of solid-state plasma fusion (‘cold-fusion’). Proc. Jpn. Acad. Ser. B 71: 304–309

    Article  Google Scholar 

  • Arata Y, Fujita H and Zhang Y 2002 Intense deuterium nuclear fusion of pycnodeuterium-lumps coagulated locally within highly deuterated atom clusters. Proc. Jpn. Acad. 78 Ser. B: 201–204

    Article  Google Scholar 

  • Basile-Doelsch I 2006 Si stable isotope in the Earth’s surface: A review. J. Geochem. Explor. 88: 252–256

    Article  Google Scholar 

  • Basile-Doelsch I, Meunier J D and Parron C 2005 Another continental pool in the terrestrial silicon cycle. Nature 433: 399–402

    Article  Google Scholar 

  • Canfiled D E 1998 A new model for Proterozoic ocean chemistry. Nature 396: 450–453

    Article  Google Scholar 

  • Cardone F, Carpinteri A and Lacidogna G 2009 Piezonuclear neutrons from fracturing of inert solids. Phys. Lett. A 373: 4158–4163

    Article  Google Scholar 

  • Carpinteri A 1986 Mechanical damage and crack growth in concrete: Plastic collapse to brittle fracture (Dordrecht: Martinus Nijhoff Publishers)

    Book  MATH  Google Scholar 

  • Carpinteri A 1989 Cusp catastrophe interpretation of fracture instability. J. Mech. Phys. Solids 37: 567–582

    Article  MATH  Google Scholar 

  • Carpinteri A 1990 A catastrophe theory approach to fracture mechanics. Int. J. Fract. 44: 57–69

    Article  MathSciNet  Google Scholar 

  • Carpinteri A 1994 Scaling laws and renormalization groups for strength and toughness of disordered materials. Int. J. Solids Struct. 31: 291–302

    Article  MATH  Google Scholar 

  • Carpinteri A, Lacidogna G and Pugno N 2006a Richter’s laws at the laboratory scale interpreted by acoustic emission. Mag. Concr. Res. 58: 619–625

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G and Niccolini G 2006b Critical behaviour in concrete structures and damage localization by acoustic emission. Key Eng. Mater. 312: 305–310

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G and Pugno N 2007 Structural damage diagnosis and life-time assessment by acoustic emission monitoring. Eng. Fract. Mech. 74: 273–289

    Article  Google Scholar 

  • Carpinteri A, Cardone F and Lacidogna G 2009a Piezonuclear neutrons from brittle fracture: Early results of mechanical compression tests. Strain 45: 332–339. Presented at the Turin Academy of Sciences on December 10, 2008. Proc. of the Turin Academy of Sciences, Ser. V, 2010 33: 27–42

    Google Scholar 

  • Carpinteri A, Cardone F and Lacidogna G 2009b Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp. Mech. 50: 1235–2010

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G and Niccolini G 2009c Fractal analysis of damage detected in concrete structural elements under loading. Chaos, Solitons and Fractals 42: 2047–2056

    Article  MATH  Google Scholar 

  • Carpinteri A, Lacidogna G and Puzzi S 2009d From criticality to final collapse: Evolution of the b-value from 1.5 to 1.0. Chaos, Solitons and Fractals 41: 843–853

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G, Niccolini G and Puzzi S 2009e Morphological fractal dimension versus power-law exponent in the scaling of damaged media. Int. J. Damage Mech. 18: 259–282

    Article  Google Scholar 

  • Carpinteri A, Chiodoni A, Manuello A and Sandrone R 2011a Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain. 47 (Suppl. 2): 282–292

    Article  Google Scholar 

  • Carpinteri A, Lacidogna G, Manuello A, Niccolini G, Schiavi A and Agosto A 2011b Mechanical and electromagnetic emissions related to stress-induced cracks. Exp. Tech. (doi:10.1111/j.1747-1567.2011.00709.x)

    Google Scholar 

  • Carpinteri A and Manuello A 2011 Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s crust. Strain. 47 (Suppl.2): 267–281

    Google Scholar 

  • Catling C D and Zahnle K J 2009 The planetary air leak. Sci. Am. 300(5): 24–31

    Article  Google Scholar 

  • Condie K C 1976 Plate tectonics and crustal evolution. New York, Toronto, Oxford, Sydney, Braunshweig, Paris: Pergamon Press

    Google Scholar 

  • De la Rocha C L, Brzezinski M and De Niro M J 2000 A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim. Cosmochim. Acta 64(14): 2467–2477

    Article  Google Scholar 

  • Derjaguin B V et al 1989 Titanium fracture yields neutrons? Nature 34: 492

    Article  Google Scholar 

  • Diebner K 1962 Fusionsprozesse mit Hilfe konvergenter Stosswellen – einige aeltere und neuere Versuche und Ueberlegungen. Kerntechnik. 3: 89–93

    Google Scholar 

  • Doglioni C 2007 Interno della Terra, Treccani, Enciclopedia Scienza e Tecnica, 595–605

  • Egami F 1975 Minor elements and evolution. J. Mol. Evol. 4(2): 113–120

    Article  Google Scholar 

  • Enomoto H and Hashimoto H 1994 in Electromagnetic phenomena related to earthquake prediction, M Hayakawa and Y Fujinawa (eds) (Tokyo: Terra Sci. Pub Co.) pp. 261–269

  • Favero G and Jobstraibizer P 1996 The distribution of aluminum in the Earth: From cosmogenesis to Sial evolution. Coord. Chem. Rev. 149: 467–400

    Google Scholar 

  • Foing B 2005 Earth’s childhood attic. Astrobiol. Mag. Retrospection (on-line) February 23

  • Fowler C M R 2005 The solid earth: An introduction to global geophysics (Cambridge: Cambridge University Press)

    Google Scholar 

  • Fraser-Smith A C, Barnardi A, McGill P R, Ladd M E, Helliwell R A and Villard O G 1990 Low-Frequency Magnetic Field Measurements near the Epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophys. Res. Lett. 17: 1465–1468

    Article  Google Scholar 

  • Frid V, Rabinovitch A and Bahat D 2003 Fracture induced electromagnetic radiation. J. Phys. D 36: 1620–1628

    Article  Google Scholar 

  • Fujii M F et al 2002 Neutron emission from fracture of piezoelectric materials in deuterium atmosphere. Jpn. J. Appl. Phys. Pt.1, 41: 2115–2119

    Article  Google Scholar 

  • Fukui K, Okubo S and Terashima T 2005 Electromagnetic radiation from rock during uniaxial compression testing: The effects of rock characteristics and test conditions. Rock Mech. Rock Eng. 38: 411–423

    Article  Google Scholar 

  • Galimov E M 2005 Redox evolution of the Earth caused by a multistage formation of its core. Earth Planet. Sci. Lett. 233: 263–276

    Article  Google Scholar 

  • Gokhberg M B, Morgunov V A, Yoshino T and Tomizawa I 1982 Experimental measurements of electromagnetic emissions possible related to earthquakes in Japan. J. Geophys. Res. 87: 7824–7828

    Article  Google Scholar 

  • Hazen M H et al 2008 Mineral evolution. Am. Mineral. 93: 1693–1720

    Article  Google Scholar 

  • Holland H D 2006 The oxygenation of the atmosphere and oceans. Philos. Trans. R. Soc. Lond., Ser. B 361: 903–915

    Article  Google Scholar 

  • Hudson J A, Crouch S L and Fairhurst C 1972 Soft, stiff and servo-controlled testing machines: A review with reference to rock failure. Eng. Geol. 6: 155–189

    Article  Google Scholar 

  • Kaliski S 1976 Critical masses of miniexplosion in fission–fusion hybrid systems. J. Tech. Phys. 17: 99–108

    Google Scholar 

  • Kaliski S 1978 Bi-conical system of concentric explosive compression of D-T. J. Tech. Phys. 19: 283–289

    MathSciNet  Google Scholar 

  • Key Iron Deposits of the World. Available at http://www.portergeo.com.au/tours/iron2002/-iron2002depm2b.asp; last accessed October 2009

  • Kholodov V N and Butuzova G Y 2008 Siderite formation and evolution on sedimentary iron ore deposition in the Earth’s history. Geol. Ore Depos. 50(4): 299–319

    Article  Google Scholar 

  • Konhauser K O et al 2009 Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458: 750–754

    Article  Google Scholar 

  • Kuzhevskij B M, Yu Nechaev O, Sigaeva E A and Zakharov V A 2003a Neutron flux variations near the Earth’s crust. A possible tectonic activity detection. Nat. Hazards Earth Syst. Sci. 3: 637–645

    Article  Google Scholar 

  • Kuzhevskij B M, Yu Nechaev O and Sigaeva E A 2003b Distribution of neutrons near the Earth’s surface. Nat. Hazards Earth Syst. Sci. 3: 255–262

    Article  Google Scholar 

  • Lacidogna G, Carpinteri A, Manuello A, Durin G, Schiavi A, Niccolini G and Agosto A 2010a Acoustic and electromagnetic emissions as precursor phenomena in failure processes. Strain. 47 (Suppl. 2): 144–152

    Google Scholar 

  • Lacidogna G, Manuello A, Carpinteri A, Niccolini G, Agosto A and Durin G 2010 Acoustic and electromagnetic emissions in rocks under compression. Proc. of SEM Annual Conf. & Exp. on Exp. and Appl. Mech., Indianapolis, 7–10 June 2010, Paper No. 433

  • Lacidogna G, Carpinteri A, Manuello A, Durin G, Schiavi A, Niccolini G and Agosto A 2011 Acoustic and electromagnetic emissions as precursor phenomena in failure processes. Strain. 47 (Suppl. 2): 144–152

    Article  Google Scholar 

  • Liu L 2004 The inception of the oceans and CO2-atmosphere in the early history of the Earth. Earth Planet. Sci. Lett. 227: 179–184

    Article  Google Scholar 

  • Lockner D A, Byerlee J D, Kuksenko V, Ponomarev A and Sidorin A 1991 Quasi static fault growth and shear fracture energy in granite. Nature 350: 39–42

    Article  Google Scholar 

  • Lunine E J I 1998 Earth: Evolution of a habitable world (Cambridge, New York, Melbourne: Cambridge University Press)

    Google Scholar 

  • Miroshnichenko M and Kuksenko V 1980 Study of electromagnetic pulses in initiation of cracks in solid dielectrics. Sov. Phys., Solid State 22: 895–896

    Google Scholar 

  • Mogi K 1962 Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull. Earthq. Res. Inst. 40: 125–173

    Google Scholar 

  • Natl. Academy of Sciences 1975 Medical and Biological Effects of Environmental Pollutants: Nickel. Proc. Natl. Acad. Sci. Washington, DC

  • Niccolini G, Bosia F, Carpinteri A, Lacidogna G, Manuello A and Pugno N 2009 Self-similarity of waiting times in fracture systems. Phys. Rev. E 80: 026101

    Article  Google Scholar 

  • Niccolini G, Schiavi A, Tarizzo P, Carpinteri A, Lacidogna G and A Manuello 2010 Scaling in temporal occurrence of quasi-rigid-body vibration pulses due to macrofractures. Phys. Rev. E 82: 046115

    Article  Google Scholar 

  • Niccolini G, Carpinteri A, Lacidogna G and Manuello A 2011 Acoustic emission monitoring of the Syracuse Athena Temple: Scale invariance in the timing of ruptures. Phys. Rev. Lett. 106: 108503

    Article  Google Scholar 

  • Nitsan U 1977 Electromagnetic emission accompanying fracture of quartz-bearing rocks. Geophys. Res. Lett. 4: 333–337

    Article  Google Scholar 

  • Ogawa T, Oike K and Miura T 1985 Electromagnetic radiations from rocks. J. Geophys. Res. 90: 6245–6249

    Article  Google Scholar 

  • Ohtsu M 1996 The history and development of acoustic emission in concrete engineering. Mag. Concr. Res. 48: 321–330

    Article  Google Scholar 

  • O’Keefe S G and Thiel D V 1995 A mechanism for the production of electromagnetic radiation during fracture of brittle materials. Phys. Earth Planet. Inter. 89: 127–135

    Article  Google Scholar 

  • Padron E, Melian G, Marrero R, Nolasco D, Barrancos J, Padilla G, Hernandez P A and Perez N M 2008 Changes in the diffuse CO2 emission and relation to seismic activity in and around El Hierro, Canary Islands. Pure Appl. Geophys. 165: 95–114

    Article  Google Scholar 

  • Parrot M 1994 in Electromagnetic phenomena related to earthquake prediction, M Hayakawa and Y Fujinawa (eds) (Tokyo: Terra Sci. Pub Co.) 61–372

  • Preparata G 1991 A new look at solid-state fractures, particle emissions and ‘cold’ nuclear fusion. Il Nuovo Cimento. 104 A: 1259–1263

    Google Scholar 

  • Rabinovitch A, Frid V and Bahat D 2007 Surface oscillations. A possible source of fracture induced electromagnetic oscillations. Tectonophysics 431: 15–21

    Article  Google Scholar 

  • Ragueneau O et al 2000 A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Glob. Planet. Change 26: 317–365

    Article  Google Scholar 

  • Roy I, Sarkar B C and Chattopadhyay A 2001 MINFO-a prototype mineral information database for iron ore resourcers of India. Comp. Geosci. 27: 357–361

    Article  Google Scholar 

  • Rudnick R L and Fountain D M 1995 Nature and composition of the continental crust: A lower crustal perspective. Rev. Geophys. 33(3): 267–309

    Article  Google Scholar 

  • Saito M A 2009 Less nickel for more oxygen. Nature 458: 714–715

    Article  Google Scholar 

  • Scott D F, Williams T J and Knoll S J 2004 Investigation of electromagnetic emissions in a deep underground mine. Proc. of the 23rd Int. Conference on Ground Control in Mining, Morgantown, 3–5 August 2004, 125–132

  • Shcherbakov R and Turcotte D L 2003 Damage and self-similarity in fracture. Theor. Appl. Fract. Mech. 39: 245–258

    Article  Google Scholar 

  • Sigman D, Jaccard S and Hau F 2004 Polar ocean stratification in a cold climate. Nature 428: 59–63

    Article  Google Scholar 

  • Taleyarkhan R P, West C D, Cho J S, Lahey R T, Nigmatulin R I and Block R C 2002 Evidence for nuclear emissions during acoustic cavitation. Science 295: 1868–1873

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1995 The geochemical evolution of the continental crust. Rev. Geophys. 33(2): 241–265

    Article  Google Scholar 

  • Taylor S R and McLennan S M 2009 Planetary crusts: Their composition, origin and evolution (Cambridge: Cambridge University Press)

    Google Scholar 

  • Volodichev N N, Kuzhevskij B M, Yu Nechaev O, Panasyuk M I, Podorolsky A and Shavrin P I 2000 Sun–Moon–Earth connections: The neutron intensity splashes and seismic activity. Astron. Vestn. 34(2): 188–190

    Google Scholar 

  • Warwick J W, Stoker C and Meyer T R 1982 Radio emission associated with rock fracture: Possible application to the great Chilean earthquake of May 22, 1960. J. Geophys. Res. 87: 2851–2859

    Article  Google Scholar 

  • Winterberg F 1984 Autocatalytic fusion–fission implosions. Atom.-Kerntechnik. 44: 146

    Google Scholar 

  • World Iron Ore producers. Available at http://www.mapsofworld.com/minerals/world-iron-ore-producers.html; last accessed October 2009

  • World Mineral Resources Map. Available at http://www.mapsofworld.com/world-mineral-map.htm; last accessed October 2009

  • Yamada I, Masuda K and Mizutni H 1989 Electromagnetic and acoustic emission associated with rock fracture. Phys. Earth Planet. Inter. 57: 157–168

    Article  Google Scholar 

  • Yamaguchi K E 2005 Evolution of the geochemical cycle of Fe trough geological time: Iron isotope perspective. Front. Res. Earth Evol. 2: 4–24

    Google Scholar 

  • Yaroshevsky A A 2006 Abundances of chemical elements in the Earth’s crust. Geochem. Int. 44(1): 54–62

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A CARPINTERI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

CARPINTERI, A., LACIDOGNA, G., BORLA, O. et al. Electromagnetic and neutron emissions from brittle rocks failure: Experimental evidence and geological implications. Sadhana 37, 59–78 (2012). https://doi.org/10.1007/s12046-012-0066-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-012-0066-4

Keywords

Navigation