Skip to main content
Log in

Bilinear form, bilinear auto-Bäcklund transformation, breather and lump solutions for a (3\(+\)1)-dimensional generalised Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid or a lattice

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Two-layer fluids are seen in fluid mechanics, thermodynamics and medical sciences. Lattices are seen in solid-state physics. In a two-layer liquid or a lattice, a (\(3+1\))-dimensional generalised Yu–Toda–Sasa–Fukuyama equation is hereby studied with symbolic computation. Via the Hirota method, bilinear form and bilinear auto-Bäcklund transformation under certain coefficient constraints are obtained. Breather solutions are worked out based on the Hirota method and extended homoclinic test approach. Considering that the periods of breather solutions tend to infinity, we derive the lump solutions under a limit procedure. We observe that the amplitudes of the breather and lump remain unchanged during the propagation. Furthermore, we graphically present the breathers and lumps under the influence of different coefficients in the equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G F Deng, Y T Gao, J J Su and C C Ding, Appl. Math. Lett. 98, 177 (2019)

    Article  MathSciNet  Google Scholar 

  2. S R Mohan, M P Singh and M P Joshi, Pramana – J. Phys. 93: 8 (2019)

    Article  ADS  Google Scholar 

  3. M T Dove, Introduction to lattice dynamics (Cambridge Univ. Press, New York, 1993)

    Book  Google Scholar 

  4. G El and A Tovbis, Phys. Rev. E 101, 052207 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  5. Z Z Lan, Appl. Math. Lett. 98, 128 (2019)

    Article  MathSciNet  Google Scholar 

  6. T T Jia, Y T Gao, G F Deng and L Hu, Nonlinear Dyn. 98, 269 (2019)

    Article  Google Scholar 

  7. G F Deng, Y T Gao, C C Ding and J J Su, Chaos Solitons Fractals 140, 110085 (2020)

    Article  MathSciNet  Google Scholar 

  8. G F Deng, Y T Gao, J J Su, C C Ding and T T Jia, Nonlinear Dyn. 99, 1039 (2020)

    Article  Google Scholar 

  9. C C Ding, Y T Gao, G F Deng and D Wang, Chaos Solitons Fractals 133, 109580 (2020)

    Article  MathSciNet  Google Scholar 

  10. C C Ding, Y T Gao and G F Deng, Nonlinear Dyn. 97, 2023 (2019)

    Article  Google Scholar 

  11. F Y Liu, Y T Gao, X Yu, C C Ding, G F Deng and T T Jia, Chaos Solitons Fractals 144, 110559 (2021)

    Article  Google Scholar 

  12. L Hu, Y T Gao, T T Jia, G F Deng and L Q Li, Z. Angew. Math. Phys. 72, 75 (2021)

  13. A R Seadawy, D C Lu, N Nasreen and S Nasreen, Physica A 534, 122155 (2019)

    Article  MathSciNet  Google Scholar 

  14. N Cheemaa, A R Seadawy and S Chen, Eur. Phys. J. Plus 134, 117 (2019)

    Article  Google Scholar 

  15. D Kumar and S Kumar, Comput. Math. Appl. 78, 857 (2019)

    Article  MathSciNet  Google Scholar 

  16. M Hayashi, K Shigemoto and T Tsukioka, J. Phys. Commun. 4, 015014 (2020)

    Article  Google Scholar 

  17. X Y Gao, Y J Guo and W R Shan, Chaos Solitons Fractals 138, 109950 (2020)

    Article  MathSciNet  Google Scholar 

  18. X Y Gao, Y J Guo and W R Shan, Appl. Math. Lett. 104, 106170 (2020)

    Article  MathSciNet  Google Scholar 

  19. X Y Gao, Y J Guo and W R Shan, Chaos Solitons Fractals 142, 110367 (2021)

    Article  Google Scholar 

  20. X Y Gao, Y J Guo, W R Shan, Y Q Yuan, C R Zhang and S S Chen, Commun. Theor. Phys. 72, 095002 (2020)

    Google Scholar 

  21. X Y Gao, Y J Guo and W R Shan, Phys. Lett. A 384, 126788 (2020)

    Article  MathSciNet  Google Scholar 

  22. X Y Gao, Y J Guo and W R Shan, Chin. J. Phys. 70, 264 (2021)

    Article  Google Scholar 

  23. X Y Gao, Y J Guo and W R Shan, Wave. Random Complex, https://doi.org/10.1080/17455030.2021.1942308 (2021) (in press)

  24. Y Shen and B Tian, Appl. Math. Lett. 121, 107301 (2021)

    Article  Google Scholar 

  25. Z Amjad and B Haider, Chaos Solitons Fractals 130, 109404 (2020)

    Article  MathSciNet  Google Scholar 

  26. M Wang, B Tian, C C Hu and S H Liu, Appl. Math. Lett. 119, 106936 (2021)

  27. J J Su, Y T Gao and C C Ding, Appl. Math. Lett. 88, 201 (2019)

    Article  MathSciNet  Google Scholar 

  28. T T Jia, Y T Gao, X Yu and L Q Li, Appl. Math. Lett. 114, 106702 (2021)

    Article  Google Scholar 

  29. M Wang, B Tian, Y Sun and Z Zhang, Comput. Math. Appl. 79, 576 (2020)

    Article  MathSciNet  Google Scholar 

  30. M Wang, B Tian, Q X Qu, X X Du, C R Zhang and Z Zhang, Eur. Phys. J. Plus 134, 578 (2019)

    Article  Google Scholar 

  31. M Wang, B Tian, Y Sun, H M Yin and Z Zhang, Chin. J. Phys. 60, 440 (2019)

    Article  Google Scholar 

  32. Y J Feng, Y T Gao, L Q Li and T T Jia, Eur. Phys. J. Plus 135, 272 (2020)

    Article  Google Scholar 

  33. Y J Feng, Y T Gao, T T Jia and L Q Li, Mod. Phys. Lett. B 33, 1950354 (2019)

    Article  ADS  Google Scholar 

  34. J J Su, Y T Gao, G F Deng and T T Jia, Phys. Rev. E 100, 042210 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. L Hu, Y T Gao, S L Jia, J J Su and G F Deng, Mod. Phys. Lett. B 33, 1950376 (2019)

    Article  ADS  Google Scholar 

  36. L Q Li, Y T Gao, L Hu, T T Jia, C C Ding and Y J Feng, Nonlinear Dyn. 100, 2729 (2020)

    Article  Google Scholar 

  37. S Kumar and D Kumar, Comput. Math. Appl. 77, 2096 (2019)

    Article  MathSciNet  Google Scholar 

  38. S Kumar, D Kumar and H Kharbanda, Pramana – J. Phys. 95: 1 (2021)

    Google Scholar 

  39. S Kumar, M Niwas and A M Wazwaz, Phys. Scr. 95, 095204 (2020)

    Article  ADS  Google Scholar 

  40. S Kumar, W X Ma and A Kumar, Chin. J. Phys. 69, 1 (2021)

    Article  Google Scholar 

  41. S Kumar, M Niwas and I Hamid, Int. J. Mod. Phys. B 35, 2150028 (2021)

    Article  ADS  Google Scholar 

  42. S Kumar, A Kumar and AM Wazwaz, Eur. Phys. J. Plus 135, 1 (2020); Y Shen, B Tian and S H Liu, Phys. Lett. A 405, 127429 (2021); F Y Liu, Y T Gao, X Yu, L Q Li, C C Ding and D Wang, Eur. Phys. J. Plus 136, 656 (2021); M Wang, B Tian, S H Liu, W R Shan and Y Jiang, Eur. Phys. J. Plus 136, 635 (2021); D Wang, Y T Gao, C C Ding and C Y Zhang, Commun. Theor. Phys. 72, 115004 (2020); D Wang, Y T Gao, J J Su and C C Ding, Mod. Phys. Lett. B 34, 2050336 (2020); D Wang, Y T Gao, X Yu, L Q Li and T T Jia, Nonlinear Dyn. 104, 1519 (2021); X T Gao, B Tian, Y Shen and C H Feng, Chaos Solitons Fractals 151, 111222 (2021); T Y Zhou, B Tian, S S Chen, C C Wei and Y Q Chen, Mod. Phys. Lett. B (2021) (in press)

  43. H M Yin, B Tian, J Chai, X Y Wu and W R Sun, Appl. Math. Lett. 58, 178 (2016)

    Article  MathSciNet  Google Scholar 

  44. M Hadac, S Herr and H Koch, Ann. Inst. H. Poincaré Anal. 26, 917 (2009)

    Article  ADS  Google Scholar 

  45. Z Z Lan, Y T Gao, J W Yang, C Q Su and Q M Huang, Mod. Phys. Lett. B 30, 1650265 (2016)

    Article  ADS  Google Scholar 

  46. L Xue, Y T Gao, D W Zuo, Y H Sun and X Yu, Z. Naturforsch. A 69, 239 (2014)

    Google Scholar 

  47. M S Bruzón, M L Gandarias, C Muriel, S Saez and F R Romero, Theor. Math. Phys. 137, 1367 (2003)

    Article  Google Scholar 

  48. H D Guo, T C Xia and B B Hu, Appl. Math. Lett. 105, 106301 (2020)

    Article  MathSciNet  Google Scholar 

  49. R Hirota, The direct method in soliton theory (Cambridge Univ. Press, New York, 2004)

    Book  MATH  Google Scholar 

  50. J G Liu, W H Zhu, L Zhou and Y K Xiong, Nonlinear Dyn. 97, 2127 (2019)

    Article  Google Scholar 

  51. S H Liu, B Tian, Q X Qu, H Li, X H Zhao, X X Du and S S Chen, Int. J. Comput. Math. 98, 1130 (2021)

  52. S H Liu, B Tian, Q X Qu, C R Zhang, C C Hu and M Wang, Mod. Phys. Lett. B 34, 2050243 (2020)

    Article  ADS  Google Scholar 

  53. Y Shen, B Tian, S H Liu and D Y Yang, Phys. Scr. 96, 075212 (2021)

  54. Y Shen, B Tian, C R Zhang, H Y Tian and S H Liu, Mod. Phys. Lett. B 35, 2150261 (2021)

  55. Y Shen, B Tian and T Y Zhou, Eur. Phys. J. Plus 136, 572 (2021)

Download references

Acknowledgements

The authors express their sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Tian, B., Zhao, X. et al. Bilinear form, bilinear auto-Bäcklund transformation, breather and lump solutions for a (3\(+\)1)-dimensional generalised Yu–Toda–Sasa–Fukuyama equation in a two-layer liquid or a lattice. Pramana - J Phys 95, 137 (2021). https://doi.org/10.1007/s12043-021-02163-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02163-4

Keywords

PACS

Navigation