Skip to main content
Log in

Multiswitching compound antisynchronization of four chaotic systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Based on three drive–one response system, in this article, the authors investigate a novel synchronization scheme for a class of chaotic systems. The new scheme, multiswitching compound antisynchronization (MSCoAS), is a notable extension of the earlier multiswitching schemes concerning only one drive–one response system model. The concept of multiswitching synchronization is extended to compound synchronization scheme such that the state variables of three drive systems antisynchronize with different state variables of the response system, simultaneously. The study involving multiswitching of three drive systems and one response system is first of its kind. Various switched modified function projective antisynchronization schemes are obtained as special cases of MSCoAS, for a suitable choice of scaling factors. Using suitable controllers and Lyapunov stability theory, sufficient condition is obtained to achieve MSCoAS between four chaotic systems and the corresponding theoretical proof is given. Numerical simulations are performed using Lorenz system in MATLAB to demonstrate the validity of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L M Pecora and T L Carroll, Phys. Rev. Lett. 64, 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  2. S Chen and J Lü, Phys. Lett. A 299, 353 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. L Huang, R Feng and M Wang, Phys. Lett. A 320, 271 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. S K Bhowmick, C Hens, D Ghosh and S K Dana, Phys. Lett. A 376, 2490 (2012)

    Article  ADS  Google Scholar 

  5. M Ma, J Zhou and J Cai, Int. J. Mod. Phys. C 23, 12500731 (2012)

    Article  Google Scholar 

  6. G Chen and X Dong, From chaos to order: Methodologies, perspectives and applications (World Scientific, Singapore, 1998)

  7. X Wu and J Li, Int. J. Comput. Math. 87, 199 (2010)

    Article  MathSciNet  Google Scholar 

  8. G Cai, S Jiang, S Cai and L Tian, Pramana – J. Phys. 86, 545 (2016)

    Article  ADS  Google Scholar 

  9. O M Kwon, J H Park and S M Lee, Nonlinear Dyn. 63, 239 (2011)

    Article  Google Scholar 

  10. L P Deng and Z Y Wu, Commun. Theor. Phys. 58, 525 (2012)

    Article  Google Scholar 

  11. T L Carroll and L M Pecora, IEEE Trans. Circuits Syst. I 38, 453 (1991)

    Google Scholar 

  12. C Yao, Q Zhao and J Yu, Phys. Lett. A 377, 370 (2013)

    Article  ADS  Google Scholar 

  13. S Zheng, Complexity 21, 343 (2015)

    Article  Google Scholar 

  14. D Chen, W Zhao, X Liu and X Ma, J. Comput. Nonlinear Dyn. 10, 011003 (2014)

    Article  Google Scholar 

  15. H L Li, Y L Jiang and Z L Wang, Nonlinear Dyn. 79, 919 (2015)

    Article  Google Scholar 

  16. F Zhang and S Liu, J. Comput. Nonlinear Dyn. 9, 021009 (2013)

    Article  Google Scholar 

  17. S K Agrawal and S Das, J. Process Control 24, 517 (2014)

    Article  Google Scholar 

  18. S Zheng, Nonlinear Dyn. 79, 147 (2016)

    Article  Google Scholar 

  19. Y Xia, Z Yang and M Han, IEEE Trans. Neural Netw. 20, 1165 (2009)

    Article  Google Scholar 

  20. S Pourdehi, P Karimaghaee and D Karimipour, Phys. Lett. A 375, 1769 (2011)

    Article  ADS  Google Scholar 

  21. S Zheng, J. Franklin Institue 353, 1460 (2016)

    Article  Google Scholar 

  22. H Taghvafard and G H Erjaee, Commun. Nonlinear Sci. Numer. Simul. 16, 4079 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  23. Z M Odibat, Nonlinear Anal. Real World Appl. 13, 779 (2013)

    Article  Google Scholar 

  24. A Abdullah, Appl. Math. Comput. 219, 10000 (2013)

    MathSciNet  Google Scholar 

  25. S Bowong and P V E McClintock, Phys. Lett. A 358, 134 (2006)

    Article  ADS  Google Scholar 

  26. F Nian and W Liu, Pramana -- J. Phys. 86, 1209 (2016)

    Article  ADS  Google Scholar 

  27. M Mossa Al-sawalha and M S M Noorani, Chin. Phys. Lett. 28, 110507 (2011)

    Article  Google Scholar 

  28. M Srivastava, S P Ansari, S K Agrawal, S Das and A Y T Leung, Nonlinear Dyn. 76, 905 (2014)

    Article  Google Scholar 

  29. S Bhalekar, Eur. Phys. J. Special Topics 223, 1495 (2014)

    Article  ADS  Google Scholar 

  30. Y Lu, P He, S H Ma, G Z Li and S Mobayben, Pramana – J. Phys. 86, 1223 (2016)

    Article  ADS  Google Scholar 

  31. A Nourian and S Balochian, Pramana – J. Phys. 86, 1401 (2016)

  32. S Wen, T Huang, X Yu, M Z Chen and Z Zeng, IEEE Trans. Circuits Systems II: Express Briefs 64, 81 (2017)

    Google Scholar 

  33. C C Yang, J. Sound Vib. 331, 501 (2012)

    Article  ADS  Google Scholar 

  34. S Y Li, C H Yang, C T Lin, L W Ko and T T Chiu, Nonlinear Dyn. 70, 2129 (2012)

    Article  Google Scholar 

  35. S Vaidyanathan, Int. J. Bioinform. Biosci. 3, 21 (2013)

    Google Scholar 

  36. R Z Luo, Y L Wang and S C Deng, Chaos 21, 043114 (2011)

    Article  ADS  Google Scholar 

  37. Z Wu and X Fu, Nonlinear Dyn. 73, 1863 (2013)

    Article  Google Scholar 

  38. J Sun, S Jiang, G Cui and Y Wang, J. Comput. Nonlinear Dyn. 11, 034501 (2015)

    Article  Google Scholar 

  39. A K Singh, V K Yadav and S Das, J. Comput. Nonlinear Dyn. 12, 011017 (2017)

    Article  Google Scholar 

  40. J W Sun, Y Shen, G D Zhang, C J Xu and G Z Cui, Nonlinear Dyn. 73, 1211 (2013)

    Article  Google Scholar 

  41. H Lin, J Cai and J Wang, J. Chaos 304643, 1 (2013)

    Article  Google Scholar 

  42. X Zhou, L Xiong and X Cai, Abstr. Appl. Anal. 953265 (2014)

  43. J Sun, Y Wang, G Cui and Y Shen, Optik 127, 1572 (2016)

    Article  ADS  Google Scholar 

  44. J Sun, Y Shen, Q Yi and C Xu, Chaos 23, 013140 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  45. A Wu and J Zhang, Adv. Difference Eq. 100 (2014)

  46. B Zhang and F Deng, Nonlinear Dyn. 77, 1519 (2014)

    Article  Google Scholar 

  47. J Sun, Y Wang, G Cui and Y Shen, Optik 127, 4136 (2016)

    Article  ADS  Google Scholar 

  48. J Sun and Y Shen, Optik 127, 9192 (2016)

    Article  ADS  Google Scholar 

  49. A Ucar, K E Lonngren and E W Bai, Chaos Solitons Fractals 38, 254 (2008)

    Article  ADS  Google Scholar 

  50. F Yu, C H Wang, Q Z Wan and Y Hu, Pramana – J. Phys. 80, 223 (2013)

    Article  ADS  Google Scholar 

  51. X Zhou, L Xiong and X Cai, Entropy 16, 377 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  52. A Khan, D Khattar and N Prajapati, J. Math. Comput. Sci. 7, 414 (2017)

  53. U E Vincent, A O Saseyi and P V E McClintock, Nonlinear Dyn. 80, 845 (2015)

    Article  Google Scholar 

  54. A Khan, D Khattar and N Prajapati, Pramana – J. Phys. 88, 47 (2017)

  55. A Khan, D Khattar and N Prajapati, Chin. J. Phys. 55, 1209 (2017)

  56. A Khan, D Khattar and N Prajapati, J. Math. Comput. Sci. 7, 847 (2017)

Download references

Acknowledgements

The authors thank the anonymous referee for the valuable comments and suggestions leading to the improvement of this paper. The work of the third author is supported by the Senior Research Fellowship of Council of Scientific and Industrial Research, India (Grant No. 09/045(1319)/2014-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitish Prajapati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Khattar, D. & Prajapati, N. Multiswitching compound antisynchronization of four chaotic systems. Pramana - J Phys 89, 90 (2017). https://doi.org/10.1007/s12043-017-1488-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1488-7

Keyword

PACS Nos

Navigation