Skip to main content
Log in

Various properties of the 0.6BaTiO 3 –0.4Ni 0 . 5 Zn 0 . 5 Fe 2 O 4 multiferroic nanocomposite

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Structural, magnetic and ferroelectric properties of 0.6BaTiO3–0.4(Ni0.5Zn0.5Fe2 O 4) multiferroic nanocomposite are presented here. The structural properties of the samples were studied by XRD and Raman spectroscopy which confirm the formation of BaTiO3 (BTO) phase with a tetragonal perovskite structure and a small secondary spinel phase due to the ferrite content. The magnetic and electric orderings were investigated by vibrating sample magnetometer (VSM) and ferroelectric (PE) loop tracer at room temperature. The inception of ferroelectric properties is due to barium titanate. The remnant polarization increases ∼5 times for the composite with Ni0.5Zn0.5Fe2 O 4 (NZFO) substitution compared to BTO. The remnant polarization is conducive for switching applications of multiferroic composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. H Schmid, Ferroelectrics 162, 19 (1994)

    Google Scholar 

  2. A J Freeman and H Austin, Magnetoelectric interaction phenomena in crystals edited by A J Freeman and H Schmid (Gordon and Breach Science Publishers, Newark, New York, 1975) pp. 181–194

  3. G Harshe, J P Dougherty, and R E Newnham, Int. J. Appl. Electromagn. Mater. 4, 145 (1993)

    Google Scholar 

  4. S Lopatin, I Lopatin, and I Lisnevskaya, Ferroelectrics 162, 63 (1994)

    Article  Google Scholar 

  5. T G Lupeiko, I V Lisnevskaya, M D Chkheidze, and B I Zvyagintsev, Inorg. Mater. 31, 1245 (1995)

    Google Scholar 

  6. M I Bichurin, I A Kornev, V M Petrov, and I Lisnevskaya, Ferroelectrics 204, 289 (1997)

    Article  Google Scholar 

  7. S K Mandal, G Sreenivasulu, V M Petrov, and G Srinivasan, Appl. Phys. Lett. 96, 192502 (2010)

    Article  ADS  Google Scholar 

  8. C W Nan, M I Bichurin, Shuxiang Dong, D Viehland, and G Srinivasan, J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  9. J Huang, P Du, L Hong, Y Dong, and M Hong, Adv. Mater. 19, 437 (2007)

    Article  Google Scholar 

  10. G Sreenivasulu, V Hari Babu, G Markandeyulu, and B S Murty, Appl. Phys. Lett. 94, 112902 (2009)

    Article  ADS  Google Scholar 

  11. G Srinivasan, C P DeVreugd, C S Flattery, V M Laletsin, and N Paddubnaya, Appl. Phys. Lett. 85, 2550 (2004)

    Article  ADS  Google Scholar 

  12. L Mitoseriu, I Pallecchi, V Buscaglia, A Testino, C E Ciomaga, and A Stancu, J. Magn. Magn. Mater. 316, e603 (2007)

    Article  ADS  Google Scholar 

  13. Y HuiZheng, X Dong, W Wang, G Weng, N Han, and P D Ma, Angew. Chem. Int. Ed. 48, 8927 (2009)

    Article  Google Scholar 

  14. Nidhi Adhlakha and K L Yadav, Smart Mater. Struct. 21, 115021 (2012)

    Article  ADS  Google Scholar 

  15. Sanjay Kumar Upadhyay and V Raghavendra Reddy, J. Appl. Phys. 113, 114107 (2013)

    Article  Google Scholar 

  16. Gupta Arti, A Huang, Santiranjan Shannigrahi, and Ratnamala Chatterjee, Appl. Phys. Lett. 98, 112901 (2011)

    Article  ADS  Google Scholar 

  17. J Samuel Smart, Am. J. Phys. 23, 356 (1955)

    Article  ADS  Google Scholar 

  18. R Naik, J J Narzarko, C S Flattery, U D Venkateswaran, V M Nayak, M S Mohammed, G W Auner, J V Mantese, N W Chubring, A L Micheli, and A B Catalan, Phys. Rev. B 61, 11367 (2000)

    Article  ADS  Google Scholar 

  19. P S Dobal et al, J. Appl. Phys. 89, 8085 (2001)

    Article  ADS  Google Scholar 

  20. Mohit Kumar, S K Rout, S Parida, G P Singh, S K Sharma, S K Pradhan, and I Won Kim, Physica B 407, 935 (2012)

    Article  ADS  Google Scholar 

  21. S W da Silva, F Nakagomi, M S Silva, A Franco Jr, V K Garg, A C Oliveira, and P C Morais, J. Nanopart. Res. 14, 798 (2012)

    Article  Google Scholar 

  22. S Narendra Babu et al, J. Appl. Phys. 109, 07D904 (2011)

    Google Scholar 

  23. N Ponpandian, A Narayanasamy, C N Chinnasamy, N Sivakumar, J -M Greneche, K Chattopadhyay, K Shinoda, B Jeyadevan, and K Tohji, Appl. Phys. Lett. 86, 192510 (2005)

    Article  ADS  Google Scholar 

  24. L Mitoseriu, I Pallecchi, V Buscaglia, A Testino, C E Ciomaga, and A Stancu, J. Magn. Magn. Mater. 316, e603 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr V Ganesan for providing the facilities of UGC–DAE–CSR Indore Centre. Moreover, thanks are also due to Drs Alok Banerjee, V Sathe, V R Reddy and Mukul Gupta for their keen interest and suggestions in VSM, Raman, PE and XRD measurements, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RENUKA CHAUHAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHAUHAN, R., SRIVASTAVA, R.C. Various properties of the 0.6BaTiO 3 –0.4Ni 0 . 5 Zn 0 . 5 Fe 2 O 4 multiferroic nanocomposite. Pramana - J Phys 87, 45 (2016). https://doi.org/10.1007/s12043-016-1263-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-016-1263-1

Keywords

Pacs Nos.

Navigation