Skip to main content
Log in

Investigation of Δ(3,3) resonance effects on the properties of neutron-rich double magic spherical finite nucleus, 132Sn, in the ground state and under compression

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

Within the framework of the radially constrained spherical Hartree–Fock (CSHF) approximation, the resonance effects of delta on the properties of neutron-rich double magic spherical nucleus 132Sn were studied. It was found that most of the increase in the nuclear energy generated under compression was used to create massive Δ particles. For 132Sn nucleus under compression at 3.19 times density of the normal nuclear density, the excited nucleons to Δs were increased sharply up to 16% of the total number of constituents. This result is consistent with the values extracted from relativistic heavy-ion collisions. The single particle energy levels were calculated and their behaviours under compression were examined. A meaningful agreement was obtained between the results with effective Hamiltonian and that with the phenomenological shell model for the low-lying single-particle spectra. The results suggest considerable reduction in compressibility for the nucleus, and softening of the equation of state with the inclusion of Δs in the nuclear dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T V Chossy and W Stocker, Phys. Lett. B507, 109 (2001)

    ADS  Google Scholar 

  2. J W Negele, Phys. Rev. C1, 1260 (1970)

    ADS  Google Scholar 

  3. E Pasyuk, C Morris, J Ullmann, J Zumbro, L Kwok, J Mathews and Y Tan, Acta Phys. Pol. B29, 2335 (1998)

    ADS  Google Scholar 

  4. C Morris, J Zumbro, J McGill, S Seestrom, R Whitten, C Reidel, A Williams, R Braunstein, M Kohler and B Kriss, Phys. Lett. B419, 25 (1998)

    ADS  Google Scholar 

  5. U Mosel and V Metag, Nucl. Phys. News 3, 25 (1993)

    Article  Google Scholar 

  6. L Xiong, Z Wu, C Ko and J Wu, Nucl. Phys. A512, 772 (1990)

    ADS  Google Scholar 

  7. M Hoffmann et al, Phys. Rev. C51, 2095 (1995)

    ADS  Google Scholar 

  8. M A Hasan, T S H Lee and J P Vary, Phys. Rev. C61, 014301 (1999)

    Google Scholar 

  9. P A Deutchman, Aust. J. Phys. 52, 955 (1999)

    ADS  Google Scholar 

  10. C M Terbert et al, Phys. Rev. Lett. 100, 132301 (2008)

    Article  ADS  Google Scholar 

  11. P Fernández de Córdoba, E Oset and M J Vicente-Vacas, Nucl. Phys. A592, 472 (1995)

    ADS  Google Scholar 

  12. A Badalá et al, Phys. Rev. C54, R2138 (1996)

    ADS  Google Scholar 

  13. U Mosel and V Metag, Nucl. Phys. News 3, 25 (1993)

    Article  Google Scholar 

  14. L Xiong, Z G Wu, C M Ko and J Q Wu, Nucl. Phys. A512, 772 (1990)

    ADS  Google Scholar 

  15. M Hoffmann et al, Phys. Rev. C51, 2095 (1995)

    ADS  Google Scholar 

  16. X Yong-Zhong, Z Yu-Ming, S Pornrad, Y Yu-Peng and K Chinorat, Chin. Phys. Lett. 26, 022501 (2009)

    Article  Google Scholar 

  17. S Shlomo and V Kolomietz, Rep. Prog. Phys. 68, 1 (2005)

    Article  ADS  Google Scholar 

  18. T Frick and H Müther, Phys. Rev. C71, 014313 (2005)

    ADS  Google Scholar 

  19. A M Green, Rep. Prog. Phys. 39, 1109 (1976)

    Article  ADS  Google Scholar 

  20. P U Sauer, Prog. Nucl. Part. Phys. 16, 35 (1986)

    Article  ADS  Google Scholar 

  21. A Valcare, F Fernánder, H Garcilazo, M T Peña and P U Sauer, Phys. Rev. C49, 1799 (1996)

    ADS  Google Scholar 

  22. A Klimkiewicz et al, Acta Phys. Pol. B40, 589 (2009)

    ADS  Google Scholar 

  23. L Coraggio et al, Nucl. Phys. A805, 424c (2008)

    ADS  Google Scholar 

  24. S Sarkar and M Sarkar, Phys. Rev. C78, 024308 (2008)

    ADS  Google Scholar 

  25. H B Brandow, Rev. Mod. Phys. 39, 77 (1967)

    Article  ADS  Google Scholar 

  26. T Lee, Phys. Rev. Lett. 20, 1571 (1983)

    Article  ADS  Google Scholar 

  27. T Lee, Phys. Rev. C29, 195 (1994)

    ADS  Google Scholar 

  28. T Lee and A Matsuyama, Phys. Rev. C32, 516 (1985)

    ADS  Google Scholar 

  29. T Lee and A Matsuyama, Phys. Rev. C36, 1459 (1987)

    ADS  Google Scholar 

  30. A Matsuyama and T Lee, Phys. Rev. C34, 1900 (1986)

    ADS  Google Scholar 

  31. A Matsuyama and T Lee, Nucl. Phys. A526, 547 (1991)

    ADS  Google Scholar 

  32. M A Hasan, T S H Lee and J P Vary, Phys. Rev. C56, 3063 (1997)

    ADS  Google Scholar 

  33. M A Hasan, J P Vary and T S H Lee, Phys. Rev. C64, 024306 (2001)

    ADS  Google Scholar 

  34. B Barrett, I Stetcu, P Navrátil and J Vary, J. Phys. A: Math. Gen. 39, 9983 (2006)

    Article  ADS  Google Scholar 

  35. M A Hasan, S H Köhler and J P Vary, Phys. Rev. C36, 2180 (1987)

    ADS  Google Scholar 

  36. M A Hasan, S H Köhler and J P Vary, Phys. Rev. C36, 2649 (1987)

    ADS  Google Scholar 

  37. J P Vary and M A Hasan, Phys. Rep. 242, 139 (1994)

    Article  ADS  Google Scholar 

  38. J P Vary and M A Hasan, Nucl. Phys. A570, 355 (1994)

    ADS  Google Scholar 

  39. M A Hasan, Dirasat J. 22, 777 (1995)

    Google Scholar 

  40. M A Hasan and J P Vary, Phys. Rev. C50, 202 (1994)

    ADS  Google Scholar 

  41. M A Hasan and J P Vary, Phys. Rev. C54, 3035 (1996)

    ADS  Google Scholar 

  42. M H Abu-Sei’leek and M A Hasan, Commun. Theor. Phys. 54, 339 (2010)

    Article  ADS  MATH  Google Scholar 

  43. M H Abu-Sei’leek, Commun. Theoret. Phys. 55, 115 (2011)

    Article  MATH  Google Scholar 

  44. M H Abu-Sei’leek, Nucl. Phys. Rev. 27, 399 (2010)

    Google Scholar 

  45. Y Tzeng, T Kuo and T Lee, Phys. Scr. 53, 300 (1996)

    Article  ADS  Google Scholar 

  46. R V Reid, Ann. Phys. (N.Y.) 50, 411 (1968)

    Article  ADS  Google Scholar 

  47. M Gari, G Niephaus and B Sommer, Phys. Rev. C23, 504 (1981)

    ADS  Google Scholar 

  48. P Navrátil and W Ormand, Phys. Rev. C68, 034305 (2003)

    Google Scholar 

  49. I Stetcu, B Barrett, P Navrátil and C Johnson, Int. J. Mod. Phys. E14, 95 (2004)

    ADS  Google Scholar 

  50. J Vary et al, Eur. Phys. J. A25, 475 (2005)

    Google Scholar 

  51. M Hasan, J Vary and P Navrátil, Phys. Rev. C69, 034332 (2004)

    ADS  Google Scholar 

  52. G Bozzolo and J Vary, Phys. Rev. Lett. 53, 903 (1984)

    Article  ADS  Google Scholar 

  53. G Bozzolo and J Vary, Phys. Rev. C31, 1909 (1985)

    ADS  Google Scholar 

  54. D Zheng, B Barrett, J Vary and R McCarthy, Phys. Rev. C49, 1999 (1994)

    ADS  Google Scholar 

  55. D Zheng, J Vary and B Barrett, Phys. Rev. 50, 2841 (1994)

    ADS  Google Scholar 

  56. K Brueckner, Phys. Rev. 97, 1353 (1955)

    Article  ADS  MATH  Google Scholar 

  57. H Brandow, Rev. Mod. Phys. 39, 771 (1967)

    Article  ADS  Google Scholar 

  58. M Saraceno, J P Bozzolo and H G Miller, Phys. Rev. C37, 1267 (1988)

    ADS  Google Scholar 

  59. U Mosol and V Metag, Nucl. Phys. News 3, 25 (1993)

    Article  Google Scholar 

  60. L Xiong and C M Ko, Nucl. Phys. A512, 772 (1990)

    ADS  Google Scholar 

  61. M Hoffmann et al, Phys. Rev. C51, 2095 (1995)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MOHAMMED H E ABU-SEI’LEEK.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ABU-SEI’LEEK, M.H.E. Investigation of Δ(3,3) resonance effects on the properties of neutron-rich double magic spherical finite nucleus, 132Sn, in the ground state and under compression. Pramana - J Phys 76, 573–589 (2011). https://doi.org/10.1007/s12043-011-0063-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0063-x

Keywords.

PACS Nos

Navigation