Skip to main content
Log in

Ground-state properties of neutron magic nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata, J. Phys. G 22, 157 (1996)

    Article  ADS  Google Scholar 

  2. A. Ozawa, T. Suzuki, and I. Tanihata, Nucl. Phys. A 693, 32 (2001).

    Article  ADS  Google Scholar 

  3. A. Ozawa, T. Kobayashi, T. Suzuki, et al., Phys. Rev. Lett. 84, 5493 (2000).

    Article  ADS  Google Scholar 

  4. R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009).

    Article  ADS  Google Scholar 

  5. C. R. Hoffman et al., Phys. Lett. B 672, 17 (2009).

    Article  ADS  Google Scholar 

  6. K. Tshoo et al., Phys. Rev. Lett. 109, 022501 (2012).

    Article  ADS  Google Scholar 

  7. A. Gade et al., Phys. Rev. C 74, 021302(R) (2006).

  8. F. Wienholtz et al., Nature 498, 346 (2013).

    Article  ADS  Google Scholar 

  9. D. Steppenbeck et al., Nature 502, 207 (2013).

    Article  ADS  Google Scholar 

  10. M. Rosenbusch et al., Phys. Rev. Lett. 114, 202501 (2015).

    Article  ADS  Google Scholar 

  11. H. Iwasaki et al., Phys. Lett. B 481, 7 (2000).

    Article  ADS  Google Scholar 

  12. B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007).

    Article  ADS  Google Scholar 

  13. S. Watanabe et al., Phys. Rev. C 89, 044610 (2014).

    Article  ADS  Google Scholar 

  14. B. Jurado et al., Phys. Lett. B 649, 43 (2007).

    Article  ADS  Google Scholar 

  15. D. Tarpanov, H. Liang, N. Van Giai, and C. Stoyanov, Phys. Rev. C 77, 054316 (2008).

    Article  ADS  Google Scholar 

  16. S. Takeuchi et al., Phys. Rev. Lett. 109, 182501 (2012).

    Article  ADS  Google Scholar 

  17. T. Otsuka and A. Schwenk, Nucl. Phys. News 22 (4), 12 (2012).

    Article  Google Scholar 

  18. M. Grasso and M. Anguiano, Phys. Rev. C 92, 054316 (2015).

    Article  ADS  Google Scholar 

  19. Z. H. Wang, J. Xiang, W. H. Long, and Z. P. Li, J. Phys. G 42, 045108 (2015).

    Article  ADS  Google Scholar 

  20. A. Gade et al., Phys. Rev. Lett. 112, 112503 (2014).

    Article  ADS  Google Scholar 

  21. R. Caballero-Folch et al., Phys. Rev. Lett. 117, 012501 (2016).

    Article  ADS  Google Scholar 

  22. D. Vautherin and M. Veneroni, Phys. Lett. B 29, 203 (1969).

    Article  ADS  Google Scholar 

  23. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  24. D. Vautherin, Phys. Rev. C 7, 296 (1973).

    Article  ADS  Google Scholar 

  25. J. Dechargéand D. Gogny, Phys. Rev. C 21, 1568 (1980).

    Article  ADS  Google Scholar 

  26. J. D. Walecka, Ann. Phys. (N. Y.) 83, 491 (1974).

    Article  ADS  Google Scholar 

  27. S. A. Chin and J. D. Walecka, Phys. Lett. B 52, 24 (1974).

    Article  ADS  Google Scholar 

  28. B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).

    Google Scholar 

  29. J. Boguta and A. R. Bodmer, Nucl. Phys.A 292, 413 (1977).

    Article  ADS  Google Scholar 

  30. S. A. Fayans, JETP Lett. 68, 169 (1998).

    Article  ADS  Google Scholar 

  31. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  32. S. Goriely et al., Phys. Rev. Lett. 102, 152503 (2009). http://www-astro.ulb.ac.be/bruslib.

    Article  ADS  Google Scholar 

  33. E. E. Saperstein and S. V. Tolokonnikov, EPJ Web Conf. 107, 02001 (2016).

    Article  Google Scholar 

  34. S. V. Tolokonnikov et al., J. Phys. G 42, 075102 (2015).

    Article  ADS  Google Scholar 

  35. M. Baldo, C. Maieron, P. Schuck, and X. Viñas, Nucl. Phys. A 736, 241 (2004).

    Article  ADS  Google Scholar 

  36. M. Baldo, P. Schuck, and X. Viñas, Phys. Lett. B 663, 390 (2008).

    Article  ADS  Google Scholar 

  37. L. M. Robledo, M. Baldo, P. Schuck, and X. Viñas, Phys. Rev. C 81, 034315 (2010).

    Article  ADS  Google Scholar 

  38. M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, J. Phys. G 37, 064015 (2010).

    Article  ADS  Google Scholar 

  39. M. Baldo, L. M. Robledo, P. Schuck, and X. Viñas, Phys. Rev. C 87, 064305 (2013).

    Article  ADS  Google Scholar 

  40. J. Dobaczewski, W. Nazarewicz, T. R. Werner, et al., Phys. Rev. C 53, 2809 (1996)

    Article  ADS  Google Scholar 

  41. K. Bennaceur, J. Dobaczewski, and M. Ploszajczak, Phys. Lett. B 496, 154 (2000).

    Article  ADS  Google Scholar 

  42. M. Grasso, N. Sandulescu, N. van Giai, and R. J. Liotta, Phys. Rev. C 64, 064321 (2001).

    Article  ADS  Google Scholar 

  43. N. Sandulescu, N. van Giai, and R. J. Liotta, Phys. Rev. C 61, 061301(R) (2000).

  44. P-G. Reinhard, Rep. Prog. Phys. 52, 439 (1989)

    Article  ADS  Google Scholar 

  45. S. Mizutori, J. Dobaczewski, G. A. Lalazissis, et al., Phys. Rev. C 61, 044326 (2000).

    Article  ADS  Google Scholar 

  46. Y. K. Gambhir, P. Ring, and A. Thimet, Ann. Phys. (N. Y.) 198, 132 (1990).

    Article  ADS  Google Scholar 

  47. Y. Sugahara and H. Toki, Nucl. Phys. A 579, 557 (1994).

    Article  ADS  Google Scholar 

  48. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996)

    Article  ADS  Google Scholar 

  49. G. A. Lalazissis, D. Vretenar, and P. Ring, Phys. Rev. C 63, 034305 (2001).

    Article  ADS  Google Scholar 

  50. H. L. Yadav, M. Kaushik, and H. Toki, Int. J. Mod. Phys. E 13, 647 (2004).

    Article  ADS  Google Scholar 

  51. D. Singh, G. Saxena, M. Kaushik, et al., Int. J. Mod. Phys. E 21, 1250076 (2012).

    Article  ADS  Google Scholar 

  52. G. Saxena, D. Singh, M. Kaushik, and S. Somorendro Singh, Can. J. Phys. 92, 253 (2014).

    Article  ADS  Google Scholar 

  53. G. Saxena and D. Singh, J. Exp. Theor. Phys. 116, 567 (2013).

    Article  ADS  Google Scholar 

  54. A. V. Afanasjev and S. E. Agbemava, Acta Phys. Polon. B 46, 405 (2015).

    Article  ADS  Google Scholar 

  55. Y. Qian and Z. Ren, Eur. Phys. J. A 52, 68 (2016).

    Article  ADS  Google Scholar 

  56. A. Shukla, S. Aberg, and A. Bajpeyi, Phys. At. Nucl. 79, 11 (2016).

    Article  Google Scholar 

  57. J. Zhao, B.-N. Lu, T. Niksic, et al., Phys. Rev. C 93, 044315 (2016).

    Article  ADS  Google Scholar 

  58. S. Dutta, D. Chakraborty, G. Gangopadhyay, and A. Bhattacharyya, Phys. Rev. C 93, 024602 (2016).

    Article  ADS  Google Scholar 

  59. J. Meng, H. Toki, J. Y. Zeng, et al., Phys. Rev. C 65, 041302(R) (2002).

  60. P.-G. Reinhard, M. Rufa, J. Marhun, et al., Z. Phys. A 323, 13 (1986).

    ADS  Google Scholar 

  61. L. S. Geng, H. Toki, S. Sugimoto, and J. Meng, Prog. Theor. Phys. 110, 921 (2003)

    Article  ADS  Google Scholar 

  62. L. S. Geng, H. Toki, and J. Meng, Prog. Theor. Phys. 113, 785 (2005).

    Article  ADS  Google Scholar 

  63. L. S. Geng, H. Toki, and J. Meng, J. Phys.G 30, 1915 (2004).

    Article  ADS  Google Scholar 

  64. G. Saxena, D. Singh, and M. Kaushik, Phys. Part. Nucl. Lett. 10, 220 (2013).

    Article  Google Scholar 

  65. A. M. Lane, Nuclear Theory (Benjamin, New York, 1964).

    Google Scholar 

  66. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, Berlin, 1980).

    Book  Google Scholar 

  67. G. Audi et al., Chin. Phys. C36, 1287 (2012). http://www.nndc.bnl.gov/.

    Article  Google Scholar 

  68. H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Saxena.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, G., Kaushik, M. Ground-state properties of neutron magic nuclei. Phys. Atom. Nuclei 80, 211–225 (2017). https://doi.org/10.1134/S1063778817020259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817020259

Navigation