Skip to main content

Advertisement

Log in

Dehydrins Are Highly Expressed in Water-Stressed Plants of Two Coffee Species

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Drought is the main limiting factor for coffee productivity. In this study, we evaluated the relationship between dehydrins (DHN) and water status in Coffea arabica cvs. Catuaí and Mundo Novo, C. canephora cv. Apoatã, and a graft of Mundo Novo shoot on Apoatã root. The plants were control stressed to achieve a water potential (ψw) of approximately −2.15 ± 0.05 MPa at predawn (6:00 am). Measurements of ψw on the preceding day (at 12:00 noon) and at predawn showed that the Arabicas had greater losses of shoot and root dry mass. Additionaly, proline increased in roots and leaves of all plants, indicating stress establishment. Two DHN unigenes in C. arabica (CaDHN1 and CaDHN3) and one in C. racemosa (CrDHN1) were identified from an expressed sequence tag database with greater than 95 % identity. Three DHN genes named CcDH1, CcDH2, and CcDH3 isolated in previous work from coffee fruits of C. canephora were analysed in this study too. Transcripts of DHN1, DHN2, and DHN3 accumulated in roots and leaves of stressed plants and also in cell suspension cultures of Catuaí stressed with PEG-8000. While DHN1 and DHN3 exhibited basal expression levels, DHN2 was exclusively expressed in stressed plants. Although DHN unigenes were induced by water stress, the expression pattern of each unigene was spatially (leaves and roots) and temporally (distinct stress levels) differentiated, as was the intensity of the responses among the Arabicas, Apoatã, and MN/Apoatã plants. Our results suggest a strong relationship between DHN expression and water stress in coffee.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alfonsi EL, Fahl JI, Carelli MLC, Fazuoli LC (2005) Crescimento, fotossíntese e composição mineral em genótipos de Coffea com potencial para utilização como porta enxerto. Bragantia 64:1–13

    Article  CAS  Google Scholar 

  • Allagulova CR, Gimalov FR, Shakirova FM, Vakhitov VA (2003) The plant dehydrins: structure and putative functions. Biochemistry 68:945–951

    PubMed  CAS  Google Scholar 

  • Baker J, Steele C, Dure L (1988) Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol 11:277–291

    Article  CAS  Google Scholar 

  • Barsalobres-Cavallari C, Severino F, Maluf M, Maia I (2009) Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions. BMC Mol Biol 10:1

    Article  PubMed  Google Scholar 

  • Bassett CL, Wisniewski ME, Artlip TS, Richart G, Norelli JL, Farrell RE Jr (2009) Comparative expression and transcript initiation of three peach dehydrin genes. Planta 230:107–118

    Article  PubMed  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  PubMed  CAS  Google Scholar 

  • Berthaud J, Charrier A (1988) Genetic resources of Coffea. In: Clarke RJ, Macrae R (eds) Coffee: agronomy, vol IV. Elsevier Applied Science, London, pp 1–42

    Google Scholar 

  • Carr MKV (2001) The water relations and irrigation requirements of coffee. Expl Agric 37:1–36

    Article  Google Scholar 

  • Cellier F, Conéjéro G, Breitler JC, Casse F (1998) Molecular and physiological responses to water deficit in drought-tolerant and drought-sensitive lines of sunflower. Plant Physiol 116:319–328

    Article  PubMed  CAS  Google Scholar 

  • Chevalier A (1942) Les caféiers du globe. Fascicule II. Iconographie des caféiers sauvages et cultivés, Enciclopedie Bioloique, vol XXII, Paris

  • Choi D-W, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • DaMatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81

    Article  CAS  Google Scholar 

  • DaMatta FM, Maestri M, Barros RS, Regazzi AJ (1993) Water relations of coffee leaves (Coffea arabica and C. canephora) in response to drought. J Hort Sci 68:741–746

    Google Scholar 

  • DaMatta FM, Maestri M, Barros RS (1997) Photosynthetic performance of two coffee species under drought. Photosynthetica 34:257–264

    Article  Google Scholar 

  • DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME (2003) Drought tolerance of two field-grown clones of Coffea canephora. Plant Sci 164:111–117

    Article  CAS  Google Scholar 

  • Davis AP, Govaerts R, Bridson DM, Stoffelen P (2006) An annotated taxonomic conspectus of genus Coffea (Rubiaceae). Bot J Linn Soc 152:465–512

    Article  Google Scholar 

  • Dias PC, Araujo WL, Moraes GABK, Barros RS, DaMatta FM (2007) Morphological and physiological responses of two coffee progenies to soil water availability. J Plant Physiol 164:1639–1647

    Article  PubMed  CAS  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  PubMed  CAS  Google Scholar 

  • Dure L (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3:363–369

    Article  PubMed  CAS  Google Scholar 

  • Fahl JL, Carelli MLC, Costa WM, Novo MCSS (1998) Enxertia de Coffea arabica sobre progênies de C. canephora e de C. congensis no crescimento, nutrição mineral e produção. Bragantia 57:297–312

    Article  Google Scholar 

  • Fahl JI, Carelli MLC, Menezes HC, Gallo PB, Trivelin PCO (2001) Gas exchange, growth, yield and beverage quality of Coffea arabica cultivars grafted on to C. canephora and C. congensis. Exp Agric 37:241–252

    Article  Google Scholar 

  • Fernandez M, Águila SV, Arora R, Chen K (2012) Isolation and characterization of three cold acclimation-responsive dehydrin genes from Eucalyptus globulus. Tree Genet Gen 8:149–162

    Article  Google Scholar 

  • Geromel C, Ferreira LP, Bonatelli ML, Bottcher A, Pot D, Pereira LFP, Leroy T, Vieira LGE, Mazzafera P (2008) Sucrose metabolism during fruit development of Coffea racemosa. Ann Appl Biol 152:179–187

    Article  CAS  Google Scholar 

  • Guerreiro Filho O (1992) Coffea racemosa Lour. Une revue. Café Cacao Thé 26:171–186

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hinniger C, Caillet V, Michoux F, Ben Amor M, Tanksley S, Lin CW, McCarthy J (2006) Isolation and characterization of cDNA encoding three dehydrins expressed during Coffea canephora (Robusta) grain development. Ann Bot 97:755–765

    Article  PubMed  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120:237–244

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki T, Yamaguchi-Shinozaki K, Shinozaki K (1995) Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet 247:391–398

    Article  PubMed  CAS  Google Scholar 

  • Kramer D, Breitenstein B, Kleinwächter M, Selmar D (2010) Stress metabolism in green coffee beans (Coffea arabica L.): Expression of dehydrins and accumulation of GABA during drying. Plant Cell Physiol 51:546–553

    Article  PubMed  CAS  Google Scholar 

  • Lin CW, Mueller LA, Mc Carthy J, Crouzillat D, Petiard V, Tanksley SD (2005) Coffee and tomato share common gene repertoires as revealed by deep sequencing of seed and cherry transcripts. Theor Appl Gen 112:114–130

    Article  CAS  Google Scholar 

  • Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582

    Article  CAS  Google Scholar 

  • Maestri M, DaMatta FM, Regazzi AJ, Barros RS (1995) Accumulation of proline and quaternary ammonium compounds in mature leaves of water stressed coffee plants (Coffea arabica and C. canephora). J Hort Sci 70:229–233

    CAS  Google Scholar 

  • Marraccini P, Vinecky F, Alves GSC, Ramos HJO, Elbelt S, Vieira NG, Carneiro FA, Sujii PS, Alekcevetch JC, Silva VA, DaMatta FM, Ferrão MAG, Leroy T, Pot D, Vieira LGE, Silva FR, Andrade AC (2012) Differentially expressed genes and proteins upon drought acclimation in tolerant and sensitive genotypes of Coffea canephora. J Exp Bot. doi:10.1093/jxb/ers103

  • Mazzafera P, Teixeira JPF (1989) Prolina em cafeeiros submetidos a déficit hídrico. Turrialba 39:305–313

    CAS  Google Scholar 

  • Medina Filho HP, Carvalho A, Monaco LC (1977) Germoplasma de Coffea racemosa e seu potencial no melhoramento do cafeeiro. Bragantia XLIII-XLVI

  • Meinzer FC, Grantz DA, Goldstein G, Saliendra NZ (1990) Water relations and maintenance of gas exchange in coffee cultivars grown in a drying soil. Plant Physiol 94:1781–1787

    Article  PubMed  CAS  Google Scholar 

  • Mondego J, Vidal R, Carazzolle M, Tokuda E, Parizzi L, Costa G, Pereira L, Andrade A, Colombo C, Vieira L, Pereira G, Consortium BCGP (2011) An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora. BMC Plant Biol 11:30

    Article  PubMed  CAS  Google Scholar 

  • Moraes MV, Franco CM (1973) Método expedito para enxertia em café. Boletim do Instituto Brasileiro de Café, 8p

  • Neuenschwander B, Baumann TW (1992) A novel type of somatic embryogenesis in Coffea arabica. Plant Cell Rep 10:608–612

    Article  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  PubMed  CAS  Google Scholar 

  • Passioura JB (1997) Drought and drought tolerance. In: Belhassen I (ed) Drought tolerance in higher plants: genetical, physiological, and molecular biological analysis. Kluwer Academic, Dordrecht, pp 1–7

    Google Scholar 

  • Pinheiro HA, DaMatta FM, Chaves ARM, Loureiro ME, Ducatti C (2005) Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Ann Bot 96:101–108

    Article  PubMed  Google Scholar 

  • Praxedes SC, DaMatta FM, Loureiro ME, Ferrão MAG, Cordeiro AT (2006) Effects of long-term soil drought on photosynthesis and carbohydrate metabolism in mature robusta coffee (Coffea canephora Pierre var. kouillou) leaves. Environ Exp Bot 56:263–273

    Article  CAS  Google Scholar 

  • Rena AB, Barros RS, Maestri M, Sondahl MR (1994) Coffee. In: Schaffer B, Andersen PC (eds) Handbook of environmental physiology of fruit crops: subtropical and tropical crops, vol 2. CRC, Boca Raton, pp 101–122

    Google Scholar 

  • Rezaian MA, Krake LR (1987) Nucleic acid extraction and virus detection in grapevine. J Virol Meth 17:277–285

    Article  CAS  Google Scholar 

  • Rezende AM, Rosado PL (2004) A informação no mercado de café. In: Zambolim L (ed) Produção integrada de café. Universidade Federal de Viçosa, Viçosa, pp 1–46

    Google Scholar 

  • Rodríguez EM, Svensson JT, Malatrasi M, Choi DW, Close TJ (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Gen 110:852–858

    Article  Google Scholar 

  • Rorat T, Grygorowicz WJ, Irzykowski W, Rey P (2004) Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta 218:878–885

    Article  PubMed  CAS  Google Scholar 

  • Rorat T, Szabala B, Grygorowicz W, Wojtowicz B, Yin Z, Rey P (2006) Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Planta 224:205–221

    Article  PubMed  CAS  Google Scholar 

  • Sartor RM, Mazzafera P (2000) Caffeine formation by suspension cultures of Coffea dewevrei. Braz Arch Biol Technol 43:61–69

    Article  CAS  Google Scholar 

  • Silva EA, Mazzafera P (2008) Influences of temperature and water in the coffee culture. Am J Plant Sci Biotechnol 2:32–41

    Google Scholar 

  • Silva VA, Antunes WC, Guimarães BLS, Paiva RMC, Silva VF, Ferrão MAG, DaMatta FM, Loureiro ME (2010) Resposta fisiológica de clone de café Conilon sensível à deficiência hídrica enxertado em porta-enxerto tolerante. Pesq Agropec Bras 45:457–464

    Article  Google Scholar 

  • Vieira LGE et al (2006) Brazilian coffee genome project: an EST-based genomic resource. Braz J Plant Physiol 18:95–108

    Article  CAS  Google Scholar 

  • Xiaoqiu H (1992) A contig assembly program based on sensitive detection of fragment overlaps. Genomics 14:18–25

    Article  Google Scholar 

  • Yang L, Zheng B, Mao C, Qi X, Liu F, Wu P (2004) Analysis of transcripts that are differentially expressed in three sectors of the rice root system under water deficit. Mol Genet Genom 272:433–442

    Article  CAS  Google Scholar 

  • Zhu B, Choi DW, Fenton R, Close TJ (2000) Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol Gen Genet 264:145–153

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the National Council for Scientific and Technological Development – Brazil (Conselho Nacional de desenvolvimento Científico e Tecnológico- Brasil CNPq) for student (A.B.S.) and research (P.M.) fellowships. We thank Dulcinéia Pereira for the support in the biochemical analyses and Dr. Rafael Vasconcelos Ribeiro and Ricardo Silvério Machado for the water potential determination in the cell suspension medium. We also thank Dr. Alan Carvalho Andrade (Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA) and Dr. Pierre Marraccini (Centre Cooperation Internationale Recherche Agronomique Développement - Cirad and Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA) for helpful comments, Dr. Maria Bernadete Silvarolla (Instituto Agronômico de Campinas – IAC) for supplying coffee seeds for experiments 1 and 2, and Dr. Raphael Ricon de Oliveira for supplying the cDNA from a pool of coffee fruits for DHN2 analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Mazzafera.

Additional information

Communicated by: Alan Carvalho Andrade

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A.B., Mazzafera, P. Dehydrins Are Highly Expressed in Water-Stressed Plants of Two Coffee Species. Tropical Plant Biol. 5, 218–232 (2012). https://doi.org/10.1007/s12042-012-9106-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-012-9106-9

Keywords

Navigation