Skip to main content
Log in

Comparison of Cytochrome P450 Genes from Six Plant Genomes

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Plants depend on cytochrome P450 (CYP) enzymes for nearly every aspect of their biology. In several sequenced angiosperms, CYP genes constitute up to 1% of the protein coding genes. The angiosperm sequence diversity is encapsulated by 59 CYP families, of which 52 families form a widely distributed core set. In the 20 years since the first plant P450 was sequenced, 3,387 P450 sequences have been identified and annotated in plant databases. As no new angiosperm CYP families have been discovered since 2004, it is now apparent that the sampling of CYP diversity is beginning to plateau. This review presents a comparison of 1,415 cytochrome P450 sequences from the six sequenced genomes of Vitis vinifera (grape), Carica papaya (papaya), Populus trichocarpa (poplar), Oryza sativa (rice), Arabidopsis thaliana (Arabidopsis or mouse ear’s cress) and Physcomitrella patens (moss). An evolutionary analysis is presented that tracks land plant P450 innovation over time from the most ancient and conserved sequences to the newest dicot-specific families. The earliest or oldest P450 families are devoted to the essential biochemistries of sterol and carotenoid synthesis. The next evolutionary radiation of P450 families appears to mediate crucial adaptations to a land environment. And, the newest CYP families appear to have driven the diversity of angiosperms in mediating the synthesis of pigments, odorants, flavors and order-/genus-specific secondary metabolites. Family-by-family comparisons allow the visualization of plant genome plasticity by whole genome duplications and massive gene family expansions via tandem duplications. Molecular evidence of human domestication is quite apparent in the repeated P450 gene duplications occurring in the grape genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nelson DR (2006) Cytochrome P450 nomenclature 2004. In: Phillips IR, Shephard EA (eds) Methods in Molecular Biology Vol 320, Cytochrome P450 Protocols, 2nd edn. Humana Press Inc., Totowa, NJ, pp 1–10

    Google Scholar 

  2. Goremykin VV, Holland B, Hirsch-Ernst KI, Hellwig FH (2005) Analysis of Acorus calamus chloroplast genome and its phylogenetic implications. Mol Biol Evol 22:1813–1822. doi:10.1093/molbev/msi173

    Article  PubMed  CAS  Google Scholar 

  3. Cahoon EB, Ripp KG, Hall SE, McGonigle B (2002) Transgenic production of epoxy fatty acids by expression of a cytochrome P450 enzyme from Euphorbia lagascae seed. Plant Physiol 128:615–624. doi:10.1104/pp.010768

    Article  PubMed  CAS  Google Scholar 

  4. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004a) Comparative genomics of Oryza sativa and Arabidopsis thaliana. Analysis of 727 Cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772. doi:10.1104/pp.104.039826

    Article  PubMed  CAS  Google Scholar 

  5. Jaillon O et al (2007) French-Italian Public Consortium for Grapevine Genome Characterization. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. doi:10.1038/nature06148

    Article  PubMed  CAS  Google Scholar 

  6. Velasco R et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12):e1326. doi:10.1371/journal.pone.0001326

    Article  PubMed  CAS  Google Scholar 

  7. Kim J, DellaPenna D (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA 103:3474–3479. doi:10.1073/pnas.0511207103

    Article  PubMed  CAS  Google Scholar 

  8. Tian L, Musetti V, Kim J, Magallanes-Lundback M, DellaPenna D (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci USA 101:402–407. doi:10.1073/pnas.2237237100

    Article  PubMed  CAS  Google Scholar 

  9. Kushiro M, Nakano T, Sato K, Yamagishi K, Asami T, Nakano A, Takatsuto S, Fujioka S, Ebizuka Y, Yoshida S (2001) Obtusifoliol 14alpha-demethylase (CYP51) antisense Arabidopsis shows slow growth and long life. Biochem Biophys Res Commun 285:98–104. doi:10.1006/bbrc.2001.5122

    Article  PubMed  CAS  Google Scholar 

  10. Kim HB, Schaller H, Goh CH, Kwon M, Choe S, An CS, Durst F, Feldmann KA, Feyereisen R (2005) Arabidopsis cyp51 mutant shows postembryonic seedling lethality associated with lack of membrane integrity. Plant Physiol 138:2033–2047. doi:10.1104/pp.105.061598

    Article  PubMed  CAS  Google Scholar 

  11. Field B, Osbourn AE (2008) Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science 320:543–547. doi:10.1126/science.1154990

    Article  PubMed  CAS  Google Scholar 

  12. Morikawa T, Mizutani M, Aoki N, Watanabe B, Saga H, Saito S, Oikawa A, Suzuki H, Sakurai N, Shibata D, Wadano A, Sakata K, Ohta D (2006) Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. Plant Cell 18:1008–1022. doi:10.1105/tpc.105.036012

    Article  PubMed  CAS  Google Scholar 

  13. Lee DS, Nioche P, Hamberg M, Raman CS (2008) Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Nature 455:363–368. doi:10.1038/nature07307

    Article  PubMed  CAS  Google Scholar 

  14. Li L, Chang Z, Pan Z, Fu ZQ, Wang X (2008) Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Proc Natl Acad Sci USA 105:13883–13888. doi:10.1073/pnas.0804099105

    Article  PubMed  Google Scholar 

  15. Bate NJ, Sivasankar S, Moxon C, Riley JM, Thompson JE, Rothstein SJ (1998) Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible. Plant Physiol 117:1393–1400. doi:10.1104/pp.117.4.1393

    Article  PubMed  CAS  Google Scholar 

  16. Noordermeer MA, Van Dijken AJ, Smeekens SC, Veldink GA, Vliegenthart JF (2000) Characterization of three cloned and expressed 13-hydroperoxide lyase isoenzymes from alfalfa with unusual N-terminal sequences and different enzyme kinetics. Eur J Biochem 267:2473–2482. doi:10.1046/j.1432-1327.2000.01283.x

    Article  PubMed  CAS  Google Scholar 

  17. Kuroda H, Oshima T, Kaneda H, Takashio M (2005) Identification and functional analyses of two cDNAs that encode fatty acid 9-/13-hydroperoxide lyase (CYP74C) in rice. Biosci Biotechnol Biochem 69:1545–1554. doi:10.1271/bbb.69.1545

    Article  PubMed  CAS  Google Scholar 

  18. Chehab EW, Raman G, Walley JW, Perea JV, Banu G, Theg S, Dehesh K (2006) Rice HYDROPEROXIDE LYASES with unique expression patterns generate distinct aldehyde signatures in Arabidopsis. Plant Physiol 141:121–134. doi:10.1104/pp.106.078592

    Article  PubMed  CAS  Google Scholar 

  19. Stumpe M, Bode J, Göbel C, Wichard T, Schaaf A, Frank W, Frank M, Reski R, Pohnert G, Feussner I (2006) Biosynthesis of C9-aldehydes in the moss Physcomitrella patens. Biochim Biophys Acta 1761:301–312

    PubMed  CAS  Google Scholar 

  20. US patent 6444874: http://www.freepatentsonline.com/6444874.html

  21. Koeduka T, Stumpe M, Matsui K, Kajiwara T, Feussner I (2003) Kinetics of barley FA hydroperoxide lyase are modulated by salts and detergents. Lipids 38:1167–1172. doi:10.1007/s11745-003-1175-9

    Article  PubMed  CAS  Google Scholar 

  22. Grechkin AN (2002) Hydroperoxide lyase and divinyl ether synthase. Prostaglandins Other Lipid Mediat 68–69:457–470. doi:10.1016/S0090-6980(02)00048-5

    Article  PubMed  Google Scholar 

  23. Benveniste I, Tijet N, Adas F, Philipps G, Salaün JP, Durst F (1998) CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid omega-hydroxylase. Biochem Biophys Res Commun 243:688–693. doi:10.1006/bbrc.1998.8156

    Article  PubMed  CAS  Google Scholar 

  24. Wellesen K, Durst F, Pinot F, Benveniste I, Nettesheim K, Wisman E, Steiner-Lange S, Saedler H, Yephremov A (2001) Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid omega -hydroxylation in development. Proc Natl Acad Sci USA 98:9694–9699. doi:10.1073/pnas.171285998

    Article  PubMed  CAS  Google Scholar 

  25. Xiao F, Goodwin SM, Xiao Y, Sun Z, Baker D, Tang X, Jenks MA, Zhou JM (2004) Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23:2903–2913. doi:10.1038/sj.emboj.7600290

    Article  PubMed  CAS  Google Scholar 

  26. Duan H, Schuler MA (2005) Differential expression and evolution of the Arabidopsis CYP86A subfamily. Plant Physiol 137:1067–1081. doi:10.1104/pp.104.055715

    Article  PubMed  CAS  Google Scholar 

  27. Rupasinghe SG, Duan H, Schuler MA (2007) Molecular definitions of fatty acid hydroxylases in Arabidopsis thaliana. Proteins 68:279–293. doi:10.1002/prot.21335

    Article  PubMed  CAS  Google Scholar 

  28. Greer S, Wen M, Bird D, Wu X, Samuels L, Kunst L, Jetter R (2007) The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiol 145:653–667. doi:10.1104/pp.107.107300

    Article  PubMed  CAS  Google Scholar 

  29. Li Y, Beisson F, Koo AJ, Molina I, Pollard M, Ohlrogge J (2007) Identification of acyltransferases required for cutin biosynthesis and production of cutin with suberin-like monomers. Proc Natl Acad Sci USA 104:18339–18344. doi:10.1073/pnas.0706984104

    Article  PubMed  Google Scholar 

  30. Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, Franke R (2008) The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid omega-hydroxylase involved in suberin monomer biosynthesis. J Exp Bot 59:2347–2360. doi:10.1093/jxb/ern101

    Article  PubMed  CAS  Google Scholar 

  31. Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(Suppl):S61–S80

    PubMed  CAS  Google Scholar 

  32. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251. doi:10.1146/annurev.arplant.59.032607.092804

    Article  PubMed  CAS  Google Scholar 

  33. Morant M, Jørgensen K, Schaller H, Pinot F, Møller BL, Werck-Reichhart D, Bak S (2007) CYP703 is an ancient cytochrome P450 in land plants catalyzing in-chain hydroxylation of lauric acid to provide building blocks for sporopollenin synthesis in pollen. Plant Cell 19:1473–1487. doi:10.1105/tpc.106.045948

    Article  PubMed  CAS  Google Scholar 

  34. Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856. doi:10.1016/j.devcel.2007.10.001

    Article  PubMed  CAS  Google Scholar 

  35. Imaishi H, Matsuo S, Swai E, Ohkawa H (2000) CYP78A1 preferentially expressed in developing inflorescences of Zea mays encoded a cytochrome P450-dependent lauric acid 12-monooxygenase. Biosci Biotechnol Biochem 64:1696–1701. doi:10.1271/bbb.64.1696

    Article  PubMed  CAS  Google Scholar 

  36. Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh J, Nagato Y, Kurata N (2004) PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci USA 101:875–880. doi:10.1073/pnas.2636936100

    Article  PubMed  CAS  Google Scholar 

  37. Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual Effects of miR156-Targeted SPL Genes and CYP78A5/KLUH on Plastochron Length and Organ Size in Arabidopsis thaliana. Plant Cell 20:1231–1243. doi:10.1105/tpc.108.058180

    Article  PubMed  CAS  Google Scholar 

  38. Jennewein S, Park H, DeJong JM, Long RM, Bollon AP, Croteau RB (2005) Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis. Biotechnol Bioeng 89:588–598. doi:10.1002/bit.20390

    Article  PubMed  CAS  Google Scholar 

  39. Rontein D, Onillon S, Herbette G, Lesot A, Werck-Reichhart D, Sallaud C, Tissier A (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J Biol Chem 283:6067–6075. doi:10.1074/jbc.M708950200

    Article  PubMed  CAS  Google Scholar 

  40. Ro DK, Arimura G, Lau SY, Piers E, Bohlmann J (2005) Loblolly pine abietadienol/abietadienal oxidase PtAO (CYP720B1) is a multifunctional, multisubstrate cytochrome P450 monooxygenase. Proc Natl Acad Sci USA 102:8060–8065. doi:10.1073/pnas.0500825102

    Article  PubMed  CAS  Google Scholar 

  41. JGI Why sequence a liverwort? http://www.jgi.doe.gov/sequencing/why/99191.html

  42. Ohnishi T, Watanabe B, Sakata K, Mizutani M (2006a) CYP724B2 and CYP90B3 function in the early C-22 hydroxylation steps of brassinosteroid biosynthetic pathway in tomato. Biosci Biotechnol Biochem 70:2071–2080. doi:10.1271/bbb.60034

    Article  PubMed  CAS  Google Scholar 

  43. Talon M, Koornneef M, Zeevaart JA (1990) Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc Natl Acad Sci USA 87:7983–7987. doi:10.1073/pnas.87.20.7983

    Article  PubMed  CAS  Google Scholar 

  44. Malonek S, Bömke C, Bornberg-Bauer E, Rojas MC, Hedden P, Hopkins P, Tudzynski B (2005) Distribution of gibberellin biosynthetic genes and gibberellin production in the Gibberella fujikuroi species complex. Phytochemistry 66:1296–1311. doi:10.1016/j.phytochem.2005.04.012

    Article  PubMed  CAS  Google Scholar 

  45. Siewers V, Smedsgaard J, Tudzynski P (2004) The P450 Monooxygenase BcABA1 Is Essential for Abscisic Acid Biosynthesis in Botrytis cinerea. Appl Environ Microbiol 70:3868–3876. doi:10.1128/AEM.70.7.3868-3876.2004

    Article  PubMed  CAS  Google Scholar 

  46. Siewers V, Kokkelink L, Smedsgaard J, Tudzynski P (2006) Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl Environ Microbiol 72:4619–4626. doi:10.1128/AEM.02919-05

    Article  PubMed  CAS  Google Scholar 

  47. Boettcher C, Fellermeier M, Boettcher C, Dräger B, Zenk MH (2005) How human neuroblastoma cells make morphine. Proc Natl Acad Sci USA 102:8495–8500. doi:10.1073/pnas.0503244102

    Article  PubMed  CAS  Google Scholar 

  48. Crozier A, Yokota T, Bishop GJ, Kamiya Y (2000) Biosynthesis of hormones and elicitors molecules. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp 850–929

    Google Scholar 

  49. Bishop GJ, Yokota T (2001) Plants steroid hormones, brassinosteroids: current highlights of molecular aspects on their synthesis/metabolism, transport, perception and response. Plant Cell Physiol 42:114–120. doi:10.1093/pcp/pce018

    Article  PubMed  CAS  Google Scholar 

  50. Clouse SD (2002) Brassinosteroids: September 30, 2002. The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists. doi: 10.1199/tab.0009 http://www.aspb.org/publications/arabidopsis/

  51. Asami T, Nakano T, Fujioka S (2005) Plant brassinosteroid hormones. Vitam Horm 72:479–504. doi:10.1016/S0083-6729(05)72014-8

    Article  PubMed  CAS  Google Scholar 

  52. Cytochrome P450 Homepage: http://drnelson.utmem.edu/cytochromeP450.html

  53. Finkelstein RR, Rock CD (2002) Brassinosteroids: September 30, 2002. The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists. doi:10.1199/tab.0058 http://www.aspb.org/publications/arabidopsis/

  54. Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004) The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J 23:1647–1656. doi:10.1038/sj.emboj.7600121

    Article  PubMed  CAS  Google Scholar 

  55. Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8’-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449. doi:10.1104/pp.103.037614

    Article  PubMed  CAS  Google Scholar 

  56. Ma H, Zhang S, Ji L, Zhu H, Yang S, Fang X, Yang R (2006) Fine mapping and in silico isolation of the EUI1 gene controlling upper internode elongation in rice. Plant Mol Biol 60:87–94. doi:10.1007/s11103-005-2762-5

    Article  PubMed  CAS  Google Scholar 

  57. Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47:181–191. doi:10.1093/pcp/pci233

    Article  PubMed  CAS  Google Scholar 

  58. Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456. doi:10.1105/tpc.105.038455

    Article  PubMed  CAS  Google Scholar 

  59. Plant hormones http://www.plant-hormones.info/occurrence_of_gas_in_plants.htm

  60. Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323. doi:10.1073/pnas.96.26.15316

    Article  PubMed  CAS  Google Scholar 

  61. Nakamura M, Satoh T, Tanaka S, Mochizuki N, Yokota T, Nagatani A (2005) Activation of the cytochrome P450 gene, CYP72C1, reduces the levels of active brassinosteroids in vivo. J Exp Bot 56:833–840. doi:10.1093/jxb/eri073

    Article  PubMed  CAS  Google Scholar 

  62. Takahashi N, Nakazawa M, Shibata K, Yokota T, Ishikawa A, Suzuki K, Kawashima M, Ichikawa T, Shimada H, Matsui M (2005) shk1-D, a dwarf Arabidopsis mutant caused by activation of the CYP72C1 gene, has altered brassinosteroid levels. Plant J 42:13–22. doi:10.1111/j.1365-313X.2005.02357.x

    Article  PubMed  CAS  Google Scholar 

  63. Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34. doi:10.1111/j.1365-313X.2005.02358.x

    Article  PubMed  CAS  Google Scholar 

  64. Ohnishi T, Nomura T, Watanabe B, Ohta D, Yokota T, Miyagawa H, Sakata K, Mizutani M (2006b) Tomato cytochrome P450 CYP734A7 functions in brassinosteroid catabolism. Phytochemistry 67:1895–1906. doi:10.1016/j.phytochem.2006.05.042

    Article  PubMed  CAS  Google Scholar 

  65. Lazar G, Goodman HM (2006) MAX1, a regulator of the flavonoid pathway, controls vegetative axillary bud outgrowth in Arabidopsis. Proc Natl Acad Sci USA 103:472–476. doi:10.1073/pnas.0509463102

    Article  PubMed  CAS  Google Scholar 

  66. Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563. doi:10.1016/j.cub.2006.01.058

    Article  PubMed  CAS  Google Scholar 

  67. Stirnberg P, Furner IJ, Ottoline Leyser HM (2007) MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching. Plant J 50:80–94. doi:10.1111/j.1365-313X.2007.03032.x

    Article  PubMed  CAS  Google Scholar 

  68. Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analysis of amino acids and coding nucleotide sequences. J Biol Chem 267:83–90

    PubMed  CAS  Google Scholar 

  69. Kieber JJ (2002) Cytokinins: March 27, 2002. The Arabidopsis Book. Rockville, MD: American Society of Plant Biologists. doi: 10.1199/tab.0063 http://www.aspb.org/publications/arabidopsis/

  70. Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-Zeatin. J Biol Chem 279:41866–41872. doi:10.1074/jbc.M406337200

    Article  PubMed  CAS  Google Scholar 

  71. Weng JK, Li X, Stout J, Chapple C (2008) Independent origins of syringyl lignin in vascular plants. Proc Natl Acad Sci USA 105:7887–7892. doi:10.1073/pnas.0801696105

    Article  PubMed  Google Scholar 

  72. Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R (2006) Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3’-hydroxylase, flavonoid 3’,5’-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12. doi:10.1186/1471-2164-7-12

    Article  PubMed  CAS  Google Scholar 

  73. Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A, Tao GQ, Nehra NS, Lu CY, Dyson BK, Tsuda S, Ashikari T, Kusumi T, Mason JG, Tanaka Y (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600. doi:10.1093/pcp/pcm131

    Article  PubMed  CAS  Google Scholar 

  74. Dixon RA, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed  CAS  Google Scholar 

  75. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp 1250–1318

    Google Scholar 

  76. Akashi T, Aoki T, Ayabe S (1998) CYP81E1, a cytochrome P450 cDNA of licorice (Glycyrrhiza echinata L.), encodes isoflavone 2’-hydroxylase. Biochem Biophys Res Commun 251:67–70. doi:10.1006/bbrc.1998.9414

    Article  PubMed  CAS  Google Scholar 

  77. Overkamp S, Hein F, Barz W (2000) Cloning and characterization of eight cytochrome P450 cDNAs from chickpea (Cicer arietinum L.) cell suspension cultures. Plant Sci 155:101–108. doi:10.1016/S0168-9452(00)00214-4

    Article  PubMed  CAS  Google Scholar 

  78. Liu CJ, Huhman D, Sumner LW, Dixon RA (2003) Regiospecific hydroxylation of isoflavones by cytochrome p450 81E enzymes from Medicago truncatula. Plant J 36:471–484. doi:10.1046/j.1365-313X.2003.01893.x

    Article  PubMed  CAS  Google Scholar 

  79. Schopfer CR, Kochs G, Lottspeich F, Ebel J (1998) Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L.). FEBS Lett 432:182–186. doi:10.1016/S0014-5793(98)00866-7

    Article  PubMed  CAS  Google Scholar 

  80. Martens S, Forkmann G (1999) Cloning and expression of flavone synthase II from Gerbera hybrids. Plant J 20:611–618. doi:10.1046/j.1365-313X.1999.00636.x

    Article  PubMed  CAS  Google Scholar 

  81. Akashi T, Aoki T, Ayabe S (1999) Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxyisoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol 121:821–828. doi:10.1104/pp.121.3.821

    Article  PubMed  CAS  Google Scholar 

  82. Jung W, Yu O, Lau S-MC, O’Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18:208–212. doi:10.1038/72671

    Article  PubMed  CAS  Google Scholar 

  83. Sawada Y, Kinoshita K, Akashi T, Aoki T, Ayabe SI (2002) Key amino acid residues required for aryl migration catalysed by the cyrochrome P450 2-hydroxyisoflavanone synthase. Plant J 31:555–564. doi:10.1046/j.1365-313X.2002.01378.x

    Article  PubMed  CAS  Google Scholar 

  84. Kim BG, Kim SY, Song HS, Lee C, Hur HG, Kim SI, Ahn JH (2003) Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pratense. Mol Cells 15:301–306

    PubMed  CAS  Google Scholar 

  85. Shibuya M, Hoshino M, Katsube Y, Hayashi H, Kushiro T, Ebizuka Y (2006) Identification of beta-amyrin and sophoradiol 24-hydroxylase by expressed sequence tag mining and functional expression assay. FEBS J 273:948–959. doi:10.1111/j.1742-4658.2006.05120.x

    Article  PubMed  CAS  Google Scholar 

  86. Latunde-Dada AO, Cabello-Hurtado F, Czittrich N, Didierjean L, Schopfer C, Hertkorn N, Werck-Reichhart D, Ebel J (2001) Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J Biol Chem 276:1688–1695

    PubMed  CAS  Google Scholar 

  87. Luo P, Wang YH, Wang GD, Essenberg M, Chen XY (2001) Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J 28:95–104. doi:10.1046/j.1365-313X.2001.01133.x

    Article  PubMed  CAS  Google Scholar 

  88. Haudenschild C, Schalk M, Karp F, Croteau R (2000) Functional expression of regiospecific cytochrome P450 limonene hydroxylases from Mint (Mentha spp.) in Escherichia coli and Saccharomyces cerevisiae. Arch Biochem Biophys 379:127–136. doi:10.1006/abbi.2000.1864

    Article  PubMed  CAS  Google Scholar 

  89. Schalk M, Croteau R (2000) A single amino acid substitution (F363I) converts the regiochemistry of the spearmint (-)-limonene hydroxylase from a C6- to a C3-hydroxylase. Proc Natl Acad Sci USA 97:11948–11953. doi:10.1073/pnas.97.22.11948

    Article  PubMed  CAS  Google Scholar 

  90. Halkier BA (1999) Glucosinolates. In: Ikan R (ed) Naturally Occurring Glucosides. Wiley & Sons Ltd., New York, pp 193–223

    Google Scholar 

  91. Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384. doi:10.1073/pnas.040569997

    Article  PubMed  CAS  Google Scholar 

  92. Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712–33717. doi:10.1074/jbc.M001667200

    Article  PubMed  CAS  Google Scholar 

  93. Bak S, Feyereisen R (2001) The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118. doi:10.1104/pp.127.1.108

    Article  PubMed  CAS  Google Scholar 

  94. Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:101–111

    Article  PubMed  CAS  Google Scholar 

  95. Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72. doi:10.1104/pp.102.019240

    Article  PubMed  CAS  Google Scholar 

  96. Hansen CH, Wittstock U, Olsen CE, Hick AJ, Pickett JA, Halkier BA (2001) Cytochrome p450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J Biol Chem 276:11078–11085. doi:10.1074/jbc.M010123200

    Article  PubMed  CAS  Google Scholar 

  97. Reintanz B, Lehnen M, Reichelt M, Gershenzon J, Kowalczyk M, Sandberg G, Godde M, Uhl R, Palme K (2001) Bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13:351–367

    Article  PubMed  CAS  Google Scholar 

  98. Chen S, Glawischnig E, Jørgensen K, Naur P, Jørgensen B, Olsen CE, Hansen CH, Rasmussen H, Pickett JA, Halkier BA (2003) CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J 33:923–937. doi:10.1046/j.1365-313X.2003.01679.x

    Article  PubMed  CAS  Google Scholar 

  99. Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194. doi:10.1105/tpc.006544

    Article  PubMed  CAS  Google Scholar 

  100. Bak S, Paquette SM, Morant M, Morant AV, Saito S, Bjarnholt N, Zagrobelny M, Jørgensen K, Hamann T, Osmani S, Simonsen HT, Pérez RS, van Heeswijck TB, Jørgensen B, Møller BL (2006) Cyanogenic glucosides: a case study for evolution and application of cytochromes P450. Phytochem Rev 5:309–329. doi:10.1007/s11101-006-9033-1

    Article  CAS  Google Scholar 

  101. Nielsen KA, Tattersall DB, Jones PR, Møller BL (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry 69:88–98. doi:10.1016/j.phytochem.2007.06.033

    Article  PubMed  CAS  Google Scholar 

  102. Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 24:797–804. doi:10.1046/j.1365-313x.2000.00922.x

    Article  PubMed  CAS  Google Scholar 

  103. Schröder G, Unterbusch E, Kaltenbach M, Schmidt J, Strack D, De Luca V, Schröder J (1999) Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: tabersonine 16-hydroxylase. FEBS Lett 458:97–102. doi:10.1016/S0014-5793(99)01138-2

    Article  PubMed  Google Scholar 

  104. Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J (2001) Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 508:215–220. doi:10.1016/S0014-5793(01)03045-9

    Article  PubMed  CAS  Google Scholar 

  105. Tamaki K, Imaishi H, Ohkawa H, Oono K, Sugimoto M (2005) Cloning, expression in yeast, and functional characterization of CYP76A4, a novel cytochrome P450 of petunia that catalyzes (omega-1)-hydroxylation of lauric acid. Biosci Biotechnol Biochem 69:406–409. doi:10.1271/bbb.69.406

    Article  PubMed  CAS  Google Scholar 

  106. Imaishi H, Petkova-Andonova M (2007) Molecular cloning of CYP76B9, a cytochrome P450 from Petunia hybrida, catalyzing the omega-hydroxylation of capric acid and lauric acid. Biosci Biotechnol Biochem 71:104–113. doi:10.1271/bbb.60396

    Article  PubMed  CAS  Google Scholar 

  107. Ralston L, Kwon ST, Schoenbeck M, Ralston J, Schenk DJ, Coates RM, Chappell J (2001) Cloning, heterologous expression, and functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiana tabacum). Arch Biochem Biophys 393:222–235. doi:10.1006/abbi.2001.2483

    Article  PubMed  CAS  Google Scholar 

  108. Kandel S, Morant M, Benveniste I, Blée E, Werck-Reichhart D, Pinot F (2005) Cloning, functional expression, and characterization of CYP709C1, the first sub-terminal hydroxylase of long chain fatty acid in plants. Induction by chemicals and methyl jasmonate. J Biol Chem 280:35881–35889. doi:10.1074/jbc.M500918200

    Article  PubMed  CAS  Google Scholar 

  109. Pauli HH, Kutchan TM (1998) Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3’-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis. Plant J 13:793–801. doi:10.1046/j.1365-313X.1998.00085.x

    Article  PubMed  CAS  Google Scholar 

  110. Apuya NR, Park JH, Zhang L, Ahyow M, Davidow P, Van Fleet J, Rarang JC, Hippley M, Johnson TW, Yoo HD, Trieu A, Krueger S, Wu CY, Lu YP, Flavell RB, Bobzin SC (2008) Enhancement of alkaloid production in opium and California poppy by transactivation using heterologous regulatory factors. Plant Biotechnol J 6:160–175. doi:10.1111/j.1467-7652.2007.00302.x

    Article  PubMed  CAS  Google Scholar 

  111. Kraus PF, Kutchan TM (1995) Molecular cloning and heterologous expression of a cDNA encoding berbamunine synthase, a C–O phenol-coupling cytochrome P450 from the higher plant Berberis stolonifera. Proc Natl Acad Sci USA 92:2071–2075. doi:10.1073/pnas.92.6.2071

    Article  PubMed  CAS  Google Scholar 

  112. Li R, Reed DW, Liu E, Nowak J, Pelcher LE, Page JE, Covello PS (2006) Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement. Chem Biol 13:513–520. doi:10.1016/j.chembiol.2006.03.005

    Article  PubMed  CAS  Google Scholar 

  113. Ikezawa N, Iwasa K, Sato F (2008) Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem 283:8810–8821. doi:10.1074/jbc.M705082200

    Article  PubMed  CAS  Google Scholar 

  114. Minami H, Kim JS, Ikezawa N, Takemura T, Katayama T, Kumagai H, Sato F (2008) Microbial production of plant benzylisoquinoline alkaloids. Proc Natl Acad Sci USA 105:7393–7398. doi:10.1073/pnas.0802981105

    Article  PubMed  Google Scholar 

  115. Gavilano LB, Siminszky B (2007) Isolation and characterization of the cytochrome P450 gene CYP82E5v2 that mediates nicotine to nornicotine conversion in the green leaves of tobacco. Plant Cell Physiol 48:1567–1574. doi:10.1093/pcp/pcm128

    Article  PubMed  CAS  Google Scholar 

  116. Chakrabarti M, Bowen SW, Coleman NP, Meekins KM, Dewey RE, Siminszky B (2008) CYP82E4-mediated nicotine to nornicotine conversion in tobacco is regulated by a senescence-specific signaling pathway. Plant Mol Biol 66:415–427. doi:10.1007/s11103-007-9280-6

    Article  PubMed  CAS  Google Scholar 

  117. Kruse T, Ho K, Yoo HD, Johnson T, Hippely M, Park JH, Flavell R, Bobzin S (2008) In planta biocatalysis screen of P450s identifies 8-methoxypsoralen as a substrate for the CYP82C subfamily, yielding original chemical structures. Chem Biol 15:149–156. doi:10.1016/j.chembiol.2008.01.008

    Article  PubMed  CAS  Google Scholar 

  118. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004b) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18. doi:10.1097/00008571-200401000-00001

    Article  PubMed  CAS  Google Scholar 

  119. Lodeiro S, Xiong Q, Wilson WK, Kolesnikova MD, Onak CS, Matsuda SP (2007) An oxidosqualene cyclase makes numerous products by diverse mechanisms: a challenge to prevailing concepts of triterpene biosynthesis. J Am Chem Soc 129:11213–11222. doi:10.1021/ja073133u

    Article  PubMed  CAS  Google Scholar 

  120. Husselstein-Muller T, Schaller H, Benveniste P (2001) Molecular cloning and expression in yeast of 2,3-oxidosqualene-triterpenoid cyclases from Arabidopsis thaliana. Plant Mol Biol 45:75–92. doi:10.1023/A:1006476123930

    Article  PubMed  CAS  Google Scholar 

  121. Shimura K, Okada A, Okada K, Jikumaru Y, Ko KW, Toyomasu T, Sassa T, Hasegawa M, Kodama O, Shibuya N, Koga J, Nojiri H, Yamane H (2007) Identification of a biosynthetic gene cluster in rice for momilactones. J Biol Chem 282:34013–34018. doi:10.1074/jbc.M703344200

    Article  PubMed  CAS  Google Scholar 

  122. Otomo K, Kanno Y, Motegi A, Kenmoku H, Yamane H, Mitsuhashi W, Oikawa H, Toshima H, Itoh H, Matsuoka M, Sassa T, Toyomasu T (2004) Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A-F in rice. Biosci Biotechnol Biochem 68:2001–2006. doi:10.1271/bbb.68.2001

    Article  PubMed  CAS  Google Scholar 

  123. Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, Nierman WC, Keller NP (2007) Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog 3(4):e50. doi:10.1371/journal.ppat.0030050

    Article  PubMed  CAS  Google Scholar 

  124. Kelly DE, Kraševec N, Mullins J, Nelson DR (2008) The CYPome (Cytochrome P450 complement) of Aspergillus nidulans. Fungal Genet Biol 2008(Sep):12. Epub ahead of print.

  125. Meyer K, Cusumano J, Somerville C, Chapple C (1996) Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monoxygenases. Proc Natl Acad Sci USA 93:6869–6874. doi:10.1073/pnas.93.14.6869

    Article  PubMed  CAS  Google Scholar 

  126. Ruegger M, Meyer K, Cusumano JC, Chapple C (1999) Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiol 119:101–110. doi:10.1104/pp.119.1.101

    Article  PubMed  CAS  Google Scholar 

  127. Humphreys JM, Hemm MR, Chapple C (1999) New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA 96:10045–10050. doi:10.1073/pnas.96.18.10045

    Article  PubMed  CAS  Google Scholar 

  128. Bozak KR, Yu H, Sirevåg R, Christoffersen RE (1990) Sequence analysis of ripening-related cytochrome P-450 cDNAs from avocado fruit. Proc Natl Acad Sci USA 87:3904–3908. doi:10.1073/pnas.87.10.3904

    Article  PubMed  CAS  Google Scholar 

  129. Pua EC, Lee YC (2003) Expression of a ripening-related cytochrome P450 cDNA in Cavendish banana (Musa acuminata cv. Williams). Gene 305:133–140. doi:10.1016/S0378-1119(02)01237-4

    Article  PubMed  CAS  Google Scholar 

  130. Aharoni A, Giri AP, Verstappen FW, Bertea CM, Sevenier R, Sun Z, Jongsma MA, Schwab W, Bouwmeester HJ (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131. doi:10.1105/tpc.104.023895

    Article  PubMed  CAS  Google Scholar 

  131. Jansen RK, Kaittanis C, Saski C, Lee SB, Tomkins J, Alverson AJ, Daniell H (2006) Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol Biol 6:32. doi:10.1186/1471-2148-6-32

    Article  PubMed  CAS  Google Scholar 

  132. Lyons E, Pedersen B, Kane J, Freeling M (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids. Trop Plant Biol. doi:10.1007/s12042-008-9017-y.

  133. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519. doi:10.1016/j.tig.2006.07.008

    Article  PubMed  CAS  Google Scholar 

  134. Zhu XY, Chase MW, Qiu YL, Kong HZ, Dilcher DL, Li JH, Chen ZD (2007) Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evol Biol 7:217. doi:10.1186/1471-2148-7-217

    Article  PubMed  CAS  Google Scholar 

  135. Hilu KW, Borsch T, Müller K, Soltis DE, Soltis PS, Savolainen V, Chase MW, Powell MP, Alice LA, Evans R, Sauquet H, Neinhuis C, Slotta TAB, Rohwer JG, Campbell CS, Chatrou LW (2003) Angiosperm phylogeny based on matK sequence information. Am J Bot 90:1758–1776. doi:10.3732/ajb.90.12.1758

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Nelson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Numbers of Cytochrome P450 genes in six complete genomes sorted by family and in the cases of CYP90 and CYP97 by subfamily. This tally does not include pseudogenes. Line 81 provides the organism totals. Ara Arabidopsis, Pap papaya, Gra grape, Pop poplar. (DOC 209 KB)

Supplementary Table 2

All Cytochrome P450 genes and pseudogenes in, Arabidopsis, rice, poplar, papaya, grape and moss. (DOC 54 KB)

Supplementary Figure 1

Phylip Alignment for CYP97 family members taken from the Cytochrome P450 website. This alignment was used to make Fig. 1. (DOC 90 KB)

Supplementary Figure 2

Alignment of CYP711 sequences taken from the Cytochrome P450 website. Conservation in SRS1-6 regions is highlighted in yellow with Arabidopsis CYP711A1 as the 100% control. (DOC 61.5 KB)

Supplementary Figure 3

Alignment of CYP701 sequences taken from the Cytochrome P450 website. Conservation in SRS1-6 regions is highlighted in yellow with Arabidopsis CYP701A3 as the 100% control. (DOC 72.5 KB)

Supplementary Figure 4

Alignment of CYP88 sequences taken from the Cytochrome P450 website. Conservation in SRS1-6 regions is highlighted in yellow with Arabidopsis CYP88A3 as the 100% control. (DOC 71 KB)

Supplementary Figure 5

Alignment of CYP84 sequences taken from the Cytochrome P450 website. Conservation in SRS1-6 regions is highlighted in yellow with Arabidopsis CYP84A1 as the 100% control. (DOC 79 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, D.R., Ming, R., Alam, M. et al. Comparison of Cytochrome P450 Genes from Six Plant Genomes. Tropical Plant Biol. 1, 216–235 (2008). https://doi.org/10.1007/s12042-008-9022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-008-9022-1

Keywords

Navigation