Skip to main content
Log in

Discerning molecular diversity and association mapping for phenological, physiological and yield traits under high temperature stress in chickpea (Cicer arietinum L.)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

High temperature (HT) stress is assuming serious production constraint for chickpea production worldwide. A collection of 182 diverse chickpea genotypes was assessed for genetic variation in 15 traits including phenological, physiological and yield-related traits under both normal sown (NS) and late sown (LS) conditions for two years 2017–2018 and 2018–2019, which revealed significant variation for all the traits. Association mapping of chickpea genotypes was also conducted with 120 simple sequence repeat markers distributed across all the chickpea chromosomes to discern the molecular diversity and to capture the significant marker-trait association (MTA). MTA analysis based on mixed linear model (MLM) revealed a total of 24 and 14 significant associations for various traits evaluated under NS conditions in 2017 and 2018, respectively. Similarly, a total of 17 and 34 significant associations for various traits were also recorded under LS conditions in 2018 and 2019, respectively. Notably, ICCM0297, NCPGR150, TAA160 and NCPGR156 markers showed significant MTA under both NS and LS conditions and GA11 exhibited significant MTA for filled pod% under late sown condition for both years. Thus, these markers could be useful for genomics-assisted breeding for developing heat-tolerant chickpea genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Agarwal G., Garg V., Kudapa H., Doddamani D., Pazhamala L. T., Khan A. W. et al. 2016 Genome-wide dissection of AP2/ERF and HSP90 gene families in five legumes and expression profiles in chickpea and pigeonpea. Plant Biotechnol. J. 14, 1563–1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellemou D., Millan T., Gil J., Abdelguerfi A. and Laouar M. 2020 Genetic diversity and population structure of Algerian chickpea (Cicer arietinum) genotypes: use of agro-morphological traits and molecular markers linked or not linked to the gene or QTL of interest. Crop Pasture Sci. 71, 155-170.

    Article  CAS  Google Scholar 

  • Bennett D., Reynolds M., Mullan D., Izanloo A., Kuchel H., Langridge P. and Schnurbusch T. 2012 Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor. Appl. Genet. 125, 1473–1485.

    Article  PubMed  Google Scholar 

  • Bhusal N., Sharma P., Sareen S. and Sarial A. K. 2018 Mapping QTLs for chlorophyll content and chlorophyll fluorescence in wheat under high-temperature stress. Biol. Plant. 62, 721–731.

    Article  CAS  Google Scholar 

  • Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y. and Buckler E. S. 2007 TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635.

    Article  CAS  PubMed  Google Scholar 

  • Chidambaranathan P., Jagannadham P. T. K., Satheesh V., Kohli D., Basavarajappa S. H., Chellapilla B. et al. 2018 Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage. J. Plant Res. 131, 525–542.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S., Sethy N. K., Shokeen B. and Bhatia S. 2009 Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor. Appl. Genet. 118, 591–608.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary S., Gaur R., Gupta S. and Bhatia S. 2012 EST-derived genic molecular markers: development and utilization for generating an advanced transcript map of chickpea. Theor. Appl. Genet. 124, 1449–1462.

    Article  CAS  PubMed  Google Scholar 

  • Devasirvatham V. and Tan D. 2018 Impact of high temperature and drought stresses on chickpea production. Agronomy 8, 145.

    Article  CAS  Google Scholar 

  • Devasirvatham V., Tan D. K. Y., Gaur P. M., Raju T. N., and Trethowan R. M. 2012 High temperature tolerance in chickpea and its implications for plant improvement. Crop Pasture Sci. 63, 419–428.

    Article  Google Scholar 

  • Devasirvatham V., Gaur P., Mallikarjuna N., Raju T. N., Trethowan R. M., and Tan D. K. Y. 2013 Reproductive biology of chickpea response to heat stress in the field is associated with the performance in controlled environments. Field Crops Res. 142, 9–19.

    Article  Google Scholar 

  • Earl D. A., and von Holdt B. M. 2012 STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361.

    Article  Google Scholar 

  • Evanno G., Regnaut S. and Goudet J. 2005 Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Gaur R., Sethy N. K., Choudhary S., Shokeen B., Gupta V. and Bhatia S. 2011 Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (Cicer arietinum L.). BMC Genomics 12, 11.

  • Gaur R., Azam S., Jeena G., Choudhary S., Jain M., Yadav G. et al. 2012 High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res. 19, 357–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gujaria N., Kumar A., Dauthal P., Dubey A., Hiremath P., BhanuPrakash A. et al. 2011 Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (Cicer arietinum L.). Theor. Appl. Genet. 122, 1577–1589.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta P. K. and Varshney R. K. 2000 The development and use of microsatellite markers for genetics and plant breeding with emphasis on bread wheat. Euphytica 1, 163–185.

    Article  Google Scholar 

  • Gudys K., Guzy-Wrobelska J., Janiak A., Dziurka M.A., Ostrowska A., Hura K. et al. 2018 Prioritization of candidate genes in QTL regions for physiological and biochemical traits underlying drought response in barley (Hordeum vulgare L.). Front. Plant Sci. 9, 769.

  • Hajibarat Z., Saidi A., Hajibarat Z. and Talebi R. 2015 Characterization of genetic diversity in chickpea using SSR markers, start codon targeted polymorphism (SCoT) and conserved DNA-derived polymorphism (CDDP). Physiol. Mol. Biol. Plants 21, 365–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., and Fujita, M. 2013a Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 14, 9643–9684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hasanuzzaman M., Nahar K. and Fujita M. 2013b Extreme temperature responses, oxidative stress and antioxidant defense in plants. In Abiotic stress-plant responses and applications in agriculture (ed. K. Vahdati and C. Leslie), pp. 169–205. InTech, Rijeka.

    Google Scholar 

  • Hasanuzzaman M., Nahar K., Alam M. M. and Fujita M. 2014 Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol. Trace Element Res. 161, 297–307.

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B., Dresler S., Rubinowska K., Matraszek-Gawron R., Woch W. and Hasanuzzaman M. 2018 Selenium biofortification enhances the growth and alters the physiological response of lamb’s lettuce grown under high temperature stress. Plant Physiol. Biochem. 127, 446–456.

    Article  CAS  PubMed  Google Scholar 

  • Jha U. C., Bohra A. and Singh N. P. 2014 Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breed. 133, 679–701.

    Article  Google Scholar 

  • Jha U. C., Jha R., Bohra A., Parida S. K., Kole P. C., Thakro V., Singh D. and Singh N. P. 2018a Population structure and association analysis of heat stress relevant traits in chickpea (Cicer arietinum L.). 3 Biotech 8, 2–14.

  • Jha U. C., Jha R., Singh N. P., Shil S. and Kole P. C. 2018b Heat tolerance indices and their role in selection of heat stress tolerant chickpea (Cicer arietinum L.) genotype. Indian J. Agric. Sci. 88, 260–267.

    Google Scholar 

  • Jha U. C., Kole P. C. and Singh N. P. 2019 Nature of gene action and combining ability analysis of yield and yield related traits in chickpea (Cicer arietinum L.) under heat stress. Indian J. Agric. Sci. 89, 500–508.

    CAS  Google Scholar 

  • Jha U. C., Bohra A., Pandey S. and Parida S. K. 2020 Breeding, genetics and genomics approaches for improving Fusarium wilt resistance in major grain legumes. Front. Genet. 11, 1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jukanti A. K., Gaur P. M., Gowda C. L., and Chibbar R. N. 2012 Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British J. Nutri. 108, S11–S26.

    Article  CAS  Google Scholar 

  • Krishnamurthy L., Gaur P. M., Basu P. S., Chaturvedi S. K., Tripathi S., Vadez V. et al. 2011 Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genet. Resour. 9, 59–69.

    Article  Google Scholar 

  • Kudapa H., Garg V., Chitikineni A. and Varshney R. K. 2018 The RNA- Seq-based high resolution gene expression atlas of chickpea (Cicer arietinum L.) reveals dynamic spatio-temporal changes associated with growth and development. Plant Cell Environ. 41, 2209–2225.

    CAS  PubMed  Google Scholar 

  • Li M. W., Muñoz N. B., Wong C. F., Wong F. L., Wong K. S., Wong J. W. H. et al. 2016 QTLs regulating the contents of antioxidants, phenolics, and flavonoids in soybean seeds share a common genomic region. Front. Plant Sci. 7, 854.

    PubMed  PubMed Central  Google Scholar 

  • Liu K. and Muse S. V. 2005 Power marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–212.

    Article  CAS  PubMed  Google Scholar 

  • Moin M., Bakshi A., Saha A., Dutta M., Madhav S. M., and Kirti P. B. 2016 Rice ribosomal protein large subunit genes and their spatio-temporal and stress regulation. Front. Plant Sci. 7, 1284.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myneni R. B., Hall F. G., Sellers P. J., and Marshak A. L. 1995 The interpretation of spectral vegetation indexes, IEEE Trans. Geosci. Remote Sens 33, 481-486.

    Article  Google Scholar 

  • Nayak S. N., Zhu H., Varghese N., Datta S., Choi H. K., Horres R. et al. 2010 Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor. Appl. Genet. 120,1415–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panter P. E., Kent O., Dale M., Smith S. J., Skipsey M., Thorlby G. et al. 2019 MUR1‐mediated cell‐wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. New Phytol. 224, 1518–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parankusam S., Bhatnagar-Mathur P. and Sharma K.K. 2017 Heat responsive proteome changes reveal molecular mechanisms underlying heat tolerance in chickpea. Environ. Exp. Bot141, 132–144.

    Article  CAS  Google Scholar 

  • Paul P. J., Samineni S., Sajja S. B., Rathore A., Das R. R., Chaturvedi S. K. et al. 2018a Capturing genetic variability and selection of traits for heat tolerance in a chickpea recombinant inbred line (RIL) population under field conditions. Euphytica 214, 1–14.

    Article  CAS  Google Scholar 

  • Paul P. J., Samineni S., Thundi M., Sajja S. B., Rathore A., Das R. R. et al. 2018b Molecular mapping of QTLs associated with heat tolerance in chickpea. Int. J. Mol. Sci. 19, E2166.

    Article  PubMed  CAS  Google Scholar 

  • Pavan S., Lotti C., Marcotrigiano A. R., Mazzeo R., Bardaro N., Bracuto V. et al. 2017 A distinct genetic cluster in cultivated chickpea as revealed by genome-wide marker discovery and genotyping. Plant Genome 10, 1–9.

    Article  CAS  Google Scholar 

  • Perrier X. and Jacquemoud-Collet J. P. 2006 DARwin Software. Paris:Centre de Cooperation Internationaleen Recherche Agronomique Pour le De’veloppement (CIRAD)

  • Pinto R. S., Lopes M. S., Collins N. C. and Reynolds M. P. 2016 Modelling and genetic dissection of staygreen under heat stress. Theor. Appl. Genet. 129, 2055–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pottorff M., Roberts P. A., Close T. J., Lonardi S., Wanamaker S. and Ehlers J. D. 2014 Identification of candidate genes and molecular markers for heat-induced brown discoloration of seed coats in (Vigna unguiculata (L.) Walp). BMC Genomics 15, 328.

  • Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushpavalli R., Krishnamurthy L., Thudi M., Gaur P. M., Rao M. V., Siddique K. H. M. 2015 Two key genomic regions harbour QTLs for salinity tolerance in ICCV 2 X JG 11 derived chickpea (Cicer arietinum L.) recombinant inbred lines. BMC Plant Biol. 15, 124.

  • Rani A., Devi P., Jha U. C., Sharma K. D., Siddique K. H. M. and Nayyar H. 2020 Developing climate-resilient chickpea involving physiological and molecular approaches with a focus on temperature and drought stresses. Front. Plant Sci. 10, 1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravichandran S., Ragupathy R., Edwards T., Domaratzki M. and Cloutier S. 2019 MicroRNA-guided regulation of heat stress response in wheat. BMC Genomics 20, 488.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saxena M. S., Bajaj D., Kujur A., Das S., Badoni S., Kumar V. et al. 2014 Natural allelic diversity, genetic structure and linkage disequilibrium pattern in wild chickpea. PLoS ONE 9, e107484.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sefera T., Abebie B., Gaur P. M., Assefa K. and Varshney R. K. 2011 Characterization and genetic diversity analysis of selected chickpea cultivars of nine countries using simple sequence repeat (SSR) markers. Crop Pasture Sci. 62,177–187.

    Article  Google Scholar 

  • Seyedimoradi H., Talebi R. and Kanouni H. 2019 Agro-morphological description, genetic diversity and population structure of chickpea using genomic-SSR and ESR-SSR molecular markers. J. Plant Biochem. Biotech. 28, 483–495.

    Article  CAS  Google Scholar 

  • Sethy N. K., Shokeen B. and Bhatia S. 2003 Isolation and characterization of sequence-tagged microsatellite sites markers in chickpea (Cicer arietinum L.). Mol. Ecol. Notes 3, 428–430.

    Article  CAS  Google Scholar 

  • Sethy N. K., Shokeen B., Edwards K. J. and Bhatia S. 2006 Development of microsatellite markers and analysis of intra specific genetic variability in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 1, 1416–1428.

    Article  CAS  Google Scholar 

  • Talukder S. K., Babar M. A., Vijayalakshmi K., Poland J., Prasad P. V. V., Bowden R. and Fritz A. 2014 Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet. 15, 1–13.

    Article  Google Scholar 

  • Thudi M., Upadhyaya H. D., Rathore A., Gaur P. M., Krishnamurthy L., Roorkiwal M. et al. 2014 Genetic dissection of drought and heat tolerance in chickpea through genome wide and candidate gene-based association mapping approaches. PLoS One 9, e96758.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thudi M., Khan A. W., Kumar V., Gaur P. M., Garg V. et al. 2016 Whole genome re-sequencing reveals genome wide variations among parental lines of mapping populations in chickpea (Cicer arietinum). BMC Pant Biol. 16, 10.

    Article  CAS  Google Scholar 

  • Upadhyaya H. D., Dwivedi S. L., Baum M., Varshney R. K., Udupa S. M., Gowda C. L. L. et al. 2008 Genetic structure, diversity, and allelic richness in composite collection and reference set in chickpea (Cicer arietinum L.). BMC Plant Biol. 8, 106.

  • Upadhyaya H. D., Dronavalli N., Gowda C. L. L. and Singh S. 2011 Identification and evaluation of chickpea germplasm for tolerance to heat stress. Crop Sci. 51, 2079–2094.

    Article  Google Scholar 

  • Varshney R. K., Song C., Saxena R. K., Azam S., Yu S., Sharpe A. G., Cannon S. et al. 2013 Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 31, 240–246.

    Article  CAS  PubMed  Google Scholar 

  • Varshney R. K., Thudi M., Nayak S. N., Gaur P. M., Kashiwagi J., Krishnamurthy L. and Jaganathan D. 2014 Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor. Appl. Genet. 127, 445–462.

    Article  CAS  PubMed  Google Scholar 

  • Varshney R. K., Thudi M., Roorkiwal M., He W., Upadhyaya H. D., Yang W. et al. 2019 Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nat. Genet. 51, 857–864.

    Article  CAS  PubMed  Google Scholar 

  • Wen J., Jiang F., Weng Y., Sun M., Shi X., Zhou Y. et al. 2019 Identification of heat-tolerance QTLs and high-temperature stress-responsive genes through conventional QTL mapping, QTL-seq and RNA-seq in tomato. BMC Plant Biol19, 398.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winter P., Benko-Iseppon A. M., Hüttel B., Ratnaparkhe M., Tullu A., Sonnante G. et al. 2000 A linkage map of chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a C. arietinum×C. reticulatum cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor. Appl. Genet. 101, 1155–1163.

    Article  CAS  Google Scholar 

  • Winter P., Pfaff T., Udupa S. M., Huttel B., Sharma P. C., Sahi S. et al. 1999 Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (Cicer arietinum L.) genome. Mol. Genet. Genom. 262, 90–101.

    Article  CAS  Google Scholar 

  • Xing H., Fu X., Yang C., Tang X., Guo L., Li C., Xu C. and Luo K. 2018 Genome-wide investigation of pentatricopeptide repeat gene family in poplar and their expression analysis in response to biotic and abiotic stresses. Sci. Rep. 8, 2817.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Z., Ersoz E., Lai C. Q., Todhunter R. J., Tiwari H. K., Gore M. A. et al. 2010 Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 42, 355–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J., Fengler K. A., Van Hemert J. L., Gupta R., Mongar N., Sun J. et al. 2019 Identification and characterization of a novel stay-green QTL that increases yield in maize. Plant Biotechnol. J. 17, 2272–2285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Indian Council of Agricultural Research (ICAR), India. This research is funded by National Initiative Crop Resilience (NICRA) project, ICAR, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Chand Jha.

Additional information

Corresponding editor: Manoj Prasad

UCJ conceived the idea and wrote the MS. RJ conducted the SSR analysis, AK collected the phenotypic data, PSB, HN performed the statistical analysis, VT, SKP performed the candidate gene analysis. SG and NP edited the MS. All authors read and approved the final manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, U.C., Jha, R., Thakro, V. et al. Discerning molecular diversity and association mapping for phenological, physiological and yield traits under high temperature stress in chickpea (Cicer arietinum L.). J Genet 100, 4 (2021). https://doi.org/10.1007/s12041-020-01254-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-01254-2

Keyword

Navigation