Skip to main content

Advertisement

Log in

Role of microRNA-195 in cardiomyocyte apoptosis induced by myocardial ischaemia–reperfusion injury

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

This study aims to investigate microRNA-195 (miR-195) expression in myocardial ischaemia–reperfusion (I/R) injury and the roles of miR-195 in cardiomyocyte apoptosis though targeting Bcl-2. A mouse model of I/R injury was established. MiR-195 expression levels were detected by real-time quantitative PCR (qPCR), and the cardiomyocyte apoptosis was detected by TUNEL assay. After cardiomyocytes isolated from neonatal rats and transfected with miR-195 mimic or inhibitor, the hypoxia/reoxygenation (H/R) injury model was established. Cardiomyocyte apoptosis and mitochondrial membrane potential were evaluated using flow cytometry. Bcl-2 and Bax mRNA expressions were detected by RT-PCR. Bcl-2, Bax and cytochrome c (Cyt-c) protein levels were determined by Western blot. Caspase-3 and caspase-9 activities were assessed by luciferase assay. Compared with the sham group, miR-195 expression levels and rate of cardiomyocyte apoptosis increased significantly in I/R group (both P<0.05). Compared to H/R + negative control (NC) group, rate of cardiomyocyte apoptosis increased in H/R + miR-195 mimic group while decreased in H/R + miR-195 inhibitor group (both P<0.05). MiR-195 knockdown alleviated the loss of mitochondrial membrane potential (P<0.05). MiR-195 overexpression decreased Bcl-2 mRNA and protein expression, increased BaxmRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). While, downregulated MiR-195 increased Bcl-2 mRNA and protein expression, decreased Bax mRNA and protein expression, Cyt-c protein expression and caspase-3 and caspase-9 activities (all P<0.05). Our study identified that miR-195 expression was upregulated in myocardial I/R injury, and miR-195 overexpression may promote cardiomyocyte apoptosis by targeting Bcl-2 and inducing mitochondrial apoptotic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bienertova-Vasku J., Sana J. and Slaby O. 2013 The role of microRNAs in mitochondria in cancer. Cancer Lett. 336, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Cai B., Pan Z. and Lu Y. 2010 The roles of microRNAs in heart diseases: a novel important regulator. Curr. Med. Chem. 17, 407–411.

    Article  CAS  PubMed  Google Scholar 

  • Czabotar P. E., Lessene G., Strasser A. and Adams J. M. 2014 Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol. 15, 49–63.

    Article  CAS  PubMed  Google Scholar 

  • Deng H., Guo Y., Song H., Xiao B., Sun W., Liu Z. et al. 2013 MicroRNA-195 and microRNA-378 mediate tumor growth suppression by epigenetical regulation in gastric cancer. Gene 518, 351–359.

    Article  CAS  PubMed  Google Scholar 

  • Di Y., Lei Y., Yu F., Changfeng F., Song W. and Xuming M. 2014 MicroRNAs expression and function in cerebral ischemia reperfusion injury. J. Mol. Neurosci. 53, 242–250.

    Article  CAS  PubMed  Google Scholar 

  • Diez E. R., Altamirano L. B., Garcia I. M., Mazzei L., Prado N. J., Fornes M. W. et al. 2015 Heart remodeling and ischemia-reperfusion arrhythmias linked to myocardial vitamin d receptors deficiency in obstructive nephropathy are reversed by paricalcitol. J. Cardiovasc. Pharmacol. Ther. 20, 211–220.

    Article  CAS  PubMed  Google Scholar 

  • Dongworth R. K., Mukherjee U. A., Hall A. R., Astin R., Ong S. B., Yao Z. et al. 2014 DJ-1 protects against cell death following acute cardiac ischemia-reperfusion injury. Cell Death Dis. 5, e1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards J. K., Pasqualini R., Arap W. and Calin G. A. 2010 MicroRNAs and ultraconserved genes as diagnostic markers and therapeutic targets in cancer and cardiovascular diseases. J. Cardiovasc. Transl. Res. 3, 271–279.

    Article  PubMed  Google Scholar 

  • Frank A., Bonney M., Bonney S., Weitzel L., Koeppen M. and Eckle T. 2012 Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin. Cardiothorac. Vasc. Anesth. 16, 123–132.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frohlich G. M., Meier P., White S. K., Yellon D. M. and Hausenloy, D. J. 2013 Myocardial reperfusion injury: looking beyond primary PCI. Eur. Heart J. 34, 1714–1722.

    Article  PubMed  Google Scholar 

  • Hausenloy D. J. and Yellon D. M. 2013 Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J. Clin. Invest. 123, 92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J. F., Luo Y. M., Wan X. H. and Jiang D. 2011 Biogenesis of MiRNA-195 and its role in biogenesis, the cell cycle, and apoptosis. J. Biochem. Mol. Toxicol. 25, 404–408.

    Article  CAS  PubMed  Google Scholar 

  • Hullinger T. G., Montgomery R. L., Seto A. G., Dickinson B. A., Semus H. M., Lynch J. M. et al. 2012 Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda S., Kong S. W., Lu J., Bisping E., Zhang H., Allen P. D. et al. 2007 Altered microRNA expression in human heart disease. Physiol. Genomics 31, 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Jin L. H. and Wei C. 2014 Role of microRNAs in the warburg effect and mitochondrial metabolism in cancer. Asian Pac. J. Cancer Prev. 15, 7015–7019.

    Article  PubMed  Google Scholar 

  • Jin Y., Lu J., Wen J., Shen Y. and Wen X. 2015 Regulation of growth of human bladder cancer by miR-192. Tumour Biol. 36, 3791–3797.

    Article  CAS  PubMed  Google Scholar 

  • Kang M. H. and Reynolds C. P. 2009 Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res. 15, 1126–1132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei H., Tang J., Li H., Zhang H., Lu C., Chen H. et al. 2014 MiR-195 affects cell migration and cell proliferation by down-regulating DIEXF in hirschsprung’s disease. BMC Gastroenterol. 14, 123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu L., Chen L., Xu Y., Li R. and Du X. 2010 microRNA-195 promotes apoptosis and suppresses tumorigenicity of human colorectal cancer cells. Biochem. Biophys. Res. Commun. 400, 236–240.

    Article  CAS  PubMed  Google Scholar 

  • Liu L. F., Liang Z., Lv Z. R., Liu X. H., Bai J., Chen J. et al. 2012 microRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury. J. Geriatr. Cardiol. 9, 28–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y., Yang H., Song L., Li N., Han Q. Y., Tian C. et al. 2014 AGGF1 protects from myocardial ischemia/reperfusion injury by regulating myocardial apoptosis and angiogenesis. Apoptosis 19, 1254–1268.

    Article  CAS  PubMed  Google Scholar 

  • Luo X., Zhang H., Xiao J. and Wang Z. 2010 Regulation of human cardiac ion channel genes by microRNAs: theoretical perspective and pathophysiological implications. Cell Physiol. Biochem. 25, 571–586.

    Article  CAS  PubMed  Google Scholar 

  • Maegdefessel L. 2014 The emerging role of microRNAs in cardiovascular disease. J. Intern. Med. 276, 633–644.

    Article  CAS  PubMed  Google Scholar 

  • Miura T., Chiba M., Kasai K., Nozaka H., Nakamura T., Shoji T. et al. 2008 Apple procyanidins induce tumor cell apoptosis through mitochondrial pathway activation of caspase-3. Carcinogenesis 29, 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Moran A. E., Forouzanfar M. H., Roth G. A., Mensah G. A., Ezzati M., Flaxman A. et al. 2014 The global burden of ischemic heart disease in 1990 and 2010: the global burden of disease 2010 study. Circulation 129, 1493–1501.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ouyang Y. B. and Giffard R. G. 2014 MicroRNAs affect BCL-2 family proteins in the setting of cerebral ischemia. Neurochem. Int. 77, 2–8.

    Article  CAS  PubMed  Google Scholar 

  • Parra V., Eisner V., Chiong M., Criollo A., Moraga F., Garcia A. et al. 2008 Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. Cardiovasc. Res. 77, 387–397.

    Article  CAS  PubMed  Google Scholar 

  • Perrelli M. G., Pagliaro P. and Penna C. 2011 Ischemia/reperfusion injury and cardioprotective mechanisms: Role of mitochondria and reactive oxygen species. World J. Cardiol. 3, 186–200.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pisarenko O., Shulzhenko V., Studneva I., Pelogeykina Y., Timoshin, A., Anesia R. et al. 2014 Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischemia-reperfusion injury. Br. J. Pharmacol. 172, 293–2945.

    Google Scholar 

  • Porrello E. R., Johnson B. A., Aurora A. B., Simpson E., Nam Y. J., Matkovich S. J. et al. 2011 MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res. 109, 670–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu J., Zhao L., Zhang P., Wang J., Xu N., Mi W. et al. 2015 MicroRNA-195 chemosensitizes colon cancer cells to the chemotherapeutic drug doxorubicin by targeting the first binding site of BCL2L2 mRNA. J. Cell Physiol. 230, 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Siddall H. K., Yellon D. M., Ong S. B., Mukherjee U. A., Burke N., Hall A. R. et al. 2013 Loss of PINK1 increases the heart’s vulnerability to ischemia-reperfusion injury. PLoS One 8, e62400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skommer J., Rana I., Marques F. Z., Zhu W., Du Z. and Charchar F. J. 2014 Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis. 5, e1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Small E. M., Frost R. J. and Olson E. N. 2010 MicroRNAs add a new dimension to cardiovascular disease. Circulation 121, 1022–1032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suen D. F., Norris K. L. and Youle R. J. 2008 Mitochondrial dynamics and apoptosis. Genes Dev. 22, 1577–1590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Y., Zheng J., Sun Y., Wu Z., Liu Z. and Huang G. 2009 MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J. 50, 377–387.

    Article  CAS  PubMed  Google Scholar 

  • Tomasetti M., Neuzil J. and Dong L. 2014 MicroRNAs as regulators of mitochondrial function: role in cancer suppression. Biochim. Biophys. Acta 1840, 1441–1453.

    Article  CAS  PubMed  Google Scholar 

  • Topkara V. K. and Mann D. L. 2011 Role of microRNAs in cardiac remodeling and heart failure. Cardiovasc. Drugs Ther. 25, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • van Rooij E. and Olson E. N. 2012 MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov. 11, 860–872.

    Article  CAS  PubMed  Google Scholar 

  • van Rooij E., Sutherland L. B., Liu N., Williams A. H., McAnally J., Gerard R. D. et al. 2006 A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA 103, 18255–18260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R., Zhao N., Li S., Fang J. H., Chen M. X., Yang J. et al. 2013 MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology 58, 642–653.

    Article  CAS  PubMed  Google Scholar 

  • Wu S. H., Hang L. W., Yang J. S., Chen H. Y., Lin H. Y., Chiang J. H. et al. 2010 Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways. Anticancer Res. 30, 2125–2133.

    CAS  PubMed  Google Scholar 

  • Yang Y., Li M., Chang S., Wang L., Song T., Gao L. et al. 2014 MicroRNA-195 acts as a tumor suppressor by directly targeting Wnt3a in HepG2 hepatocellular carcinoma cells. Mol. Med. Rep. 10, 2643–2648.

    CAS  PubMed  Google Scholar 

  • Yongchun Z., Linwei T., Xicai W., Lianhua Y., Guangqiang Z., Ming Y. et al. 2014 MicroRNA-195 inhibits non-small cell lung cancer cell proliferation, migration and invasion by targeting MYB. Cancer Lett. 347, 65–74.

    Article  CAS  PubMed  Google Scholar 

  • Zhao F. L., Dou Y. C., Wang X. F., Han D. C., Lv Z. G., Ge S. L. et al. 2014 Serum microRNA-195 is down-regulated in breast cancer: a potential marker for the diagnosis of breast cancer. Mol. Biol. Rep. 41, 5913–5922.

    Article  CAS  PubMed  Google Scholar 

  • Zhou X., Zhang J., Jia Q., Ren Y., Wang Y., Shi L. et al. 2010 Reduction of miR-21 induces glioma cell apoptosis via activating caspase 9 and 3. Oncol. Rep. 24, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Zhu H. and Fan G. C. 2012 Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc. Res. 94, 284–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H., Yang Y., Wang Y., Li J., Schiller P. W. and Peng T. 2011 MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc. Res. 92, 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Zhu L., Yuan H., Guo C., Lu Y., Deng S., Yang Y. et al. 2012 Zearalenone induces apoptosis and necrosis in porcine granulosa cells via a caspase-3- and caspase-9-dependent mitochondrial signaling pathway. J. Cell Physiol. 227, 1814–1820.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We would like to acknowledge the instructors and work mates for their helpful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHANG-KUI GAO.

Additional information

Gao C.-K., Liu H., Cui C.-J., Liang Z.-G. Yao H. and Tian Y. 2016 Role of microRNA-195 in cardiomyocyte apoptosis induced by myocardial ischaemia–reperfusion injury. J. Genet. 95, xx–xx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GAO, CK., LIU, H., CUI, CJ. et al. Role of microRNA-195 in cardiomyocyte apoptosis induced by myocardial ischaemia–reperfusion injury. J Genet 95, 99–108 (2016). https://doi.org/10.1007/s12041-016-0616-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0616-3

Keywords

Navigation