Skip to main content
Log in

Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Aux/IAA is an important gene family involved in many aspects of growth and development. Aux/IAA proteins are short-lived nuclear proteins that are induced primarily by various phytohormones. In this study, 29 Aux/IAA family genes (CsIAA01–CsIAA29) were identified and characterized in cucumber, including gene structures, phylogenetic relationships, conserved protein motifs and chromosomal locations. These genes show distinct organizational patterns of their putative motifs. The distributions of the genes vary: except for five CsIAA genes in cucumber that were not located, seven CsIAA genes were found on scaffold, while the other 17 CsIAA genes were distributed on seven other chromosomes. Based on a phylogenetic analysis of the Aux/IAA protein sequences from cucumber, Arabidopsis and other plants, the Aux/IAA genes in cucumber were categorized into seven subfamilies. To investigate whether the expression of CsIAA genes is associated with auxin induction, their transcript levels were monitored in seedlings treated with IAA (indole-3-acetic acid), and their expression patterns were analysed by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR). The results showed that 11/29 CsIAA genes were expressed in leaves whether treated with IAA or not and the time course of processing and compared with the control, five CsIAA genes showed low expression only after 60 min treatment with IAA, while 11 genes showed no expression. These results provide useful information for further functional analysis of Aux/IAA gene family in cucumber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abel S. and Theologis A. 1996 Early genes and auxin action. Plant Physiol. 111, 9–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Abel S., Oeller P. W. and Theologis A. 1994 Early auxin-induced genes encode short-lived nuclear proteins. Proc. Natl. Acad. Sci. USA 91, 326–330.

    Article  CAS  PubMed  Google Scholar 

  • Bailey T. L., Boden M., Buske F. A., Frith M., Grant C. E., Clementi L. et al. 2009 MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 37, 202–208.

    Article  Google Scholar 

  • Benjamins R. and Scheres B. 2008 Auxin: the looping star in plant development. Annu. Rev. Plant Biol. 59, 443–465.

    Article  CAS  PubMed  Google Scholar 

  • Cakir B., Kilickaya O. and Olcay A. C. 2013 Genome-wide analysis of Aux/IAA genes in Vitis vinifera: cloning and expression profiling of a grape Aux/IAA gene in response to phytohormone and abiotic stresses. Acta Physiol. Plant. 35, 365–377.

    CAS  Google Scholar 

  • Dharmasiri N. and Estelle M. 2004 Auxin signaling and regulated protein degradation. Trends Plant Sci. 9, 302–308.

    Article  CAS  PubMed  Google Scholar 

  • Dreher K. A., Brown J., Saw R. E. and Callis J. 2006 The Arabidopsis Aux/IAA protein family has diversified in degradation and auxin responsiveness. Plant Cell. 18, 699–714.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eddy S. R. 2008 A probabilistic model of local sequence alignment that simplifies statistical significance estimation. PLoS Comput. Biol. 4, e1000069.

    Google Scholar 

  • Finn R. D., Tate J., Mistry J., Coggill P. C., Sammut S. J., Hotz H. R. et al. 2008 The Pfam protein families database. Nucleic Acids Res. 36, 281–288.

    Article  Google Scholar 

  • Friml J. 2003 Auxin transport-shaping the plant. Curr. Opin. Plant Biol. 6, 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Fujii N., Kamada M., Yamasaki S. and Takahashi H. 2000 Differential accumulation of Aux/IAA mRNA during seedling development and gravity response in cucumber (Cucumis sativus L.). Plant Mol. Biol. 42, 731–740.

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle T. J. and Hagen G. 2007 Auxin response factors. Curr. Opin. Plant Biol. 10, 453–460.

    Article  CAS  PubMed  Google Scholar 

  • Hardtke C. S., Ckurshumova W., Vidaurre D. P., Singh S. A., Stamatiou G., Tiwari S. B. et al. 2004 Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131, 1089–1100

    Google Scholar 

  • Huang S. W., Li R. Q., Zhang Z. H., Li L., Gu X. F., Fan W. et al. 2009 The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41, 1275–1281.

  • Jain M., Kaur N., Garg R., Thakur J. K., Tyagi A. K. and Khurana J. P. 2006 Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct. Integr. Genomics 6, 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Kalluri U. C., Difazio S. P., Brunner A. M. and Tuskan G. A. 2007 Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biol. 7, 59.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kohno M., Takato H., Horiuchi H., Fujita K. and Suzuki S. 2012 Auxin-nonresponsive grape Aux/IAA19 is a positive regulator of plant growth. Mol. Biol. Rep. 39, 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Larkin M. A., Blackshields G., Brown N. P., Chenna R., Mcgettigan P. A., Mcwilliam H. et al. 2007 Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Lee D. J., Park J. W., Lee H. W. and Kim J. 2009 Genome-wide analysis of the auxin-responsive transcriptome downstream of iaa1 and its expression analysis reveal the diversity and complexity of auxin-regulated gene expression. J. Exp. Bot. 60, 3935–3957.

    Article  CAS  PubMed  Google Scholar 

  • Letunic I., Copley R. R., Schmid T. S., Ciccarelli F. D., Doerks T., Schultz J. et al. 2004 SMART 4.0: towards genomic data integration. Nucleic Acids Res. 32, 142–144.

    Article  Google Scholar 

  • Leyser O. 2006 Dynamic integration of auxin transport and signaling. Curr. Biol. 16, 424–433.

    Article  Google Scholar 

  • Liu D. J., Chen J. Y. and Lu W. J. 2011 Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development. Mol. Biol. Rep. 38, 1187–1193.

    Article  CAS  PubMed  Google Scholar 

  • Nemhauser J. L., Hong F. and Chory J. 2006 Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475.

    Article  CAS  PubMed  Google Scholar 

  • Poutrain P., Guirimand G., Glévarec G., Courdavault V. and Pichon O. 2011 Molecular characterization of an Aux/IAA of Catharanthus roseus. J. Plant Growth Regul. 30, 235–241.

    Article  CAS  Google Scholar 

  • Reed J. W. 2001 Roles and activities of Aux/IAA proteins in Arabidopsis. Trends Plant Sci. 6, 420–425.

    Article  CAS  PubMed  Google Scholar 

  • Rogg L. E., Lasswell J. and Bartel B. 2001 A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13, 465–480.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song Y. L., You J. and Xiong L. Z. 2009 Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol. Biol. 70, 297–309.

    Article  CAS  PubMed  Google Scholar 

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007 MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Teale W. D., Paponov I. A. and Palme K. 2006 Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847–859.

    Article  CAS  PubMed  Google Scholar 

  • Terrile M. C., Fiol D. F. and Casalongué C. A. 2010 Solanum tuberosum Aux/IAA family: new members and characterization of StIAA1 interacting proteins. Plant Growth Regul. 62, 93–99.

    Google Scholar 

  • Tiwari S. B., Wang X. J., Hagen G. and Guilfoyle T. J. 2001 Aux/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13, 2809–2822.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tiwari S. B., Hagen G. and Guilfoyle T. 2004 Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16, 533–543.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uchiumi T. and Okamoto T. 2010 Rice fruit development is associated with an increased IAA content in pollinated ovaries. Planta 232, 579–592.

    Article  CAS  PubMed  Google Scholar 

  • Wang H., Tian C. E., Duan J. and Wu K. Q. 2008 Research progresses on GH3s, one family of primary auxin-responsive genes. Plant Growth Regul. 56, 225–232.

    Article  CAS  Google Scholar 

  • Wang Y. J., Deng D. X., Bian Y. L., Lv Y. P. and Xie Q. 2010a Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Mol. Biol. Rep. 37, 3991–4001.

    Article  CAS  PubMed  Google Scholar 

  • Wang S. K., Bai Y. H., Shen C. J., Wu Y. R., Zhang S. N., Jiang D. A. et al. 2010b Auxin-related gene families in abiotic stress response in Sorghum bicolor. Funct. Integr. Genomics 10, 533–546.

    Article  CAS  PubMed  Google Scholar 

  • Worley C. K., Zenser N., Ramos J., Rouse D., Leyser O., Theologis A. et al. 2000 Degradation of Aux/IAA proteins is essential for normal auxin signalling. Plant J. 21, 553–562.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J. H., Chen R. G., Xiao J. H., Zou L. P., Li H. X., Ouyang B. et al. 2007 Isolation and characterization of SlIAA3, an Aux/IAA gene from tomato. Mitochondrial DNA 18, 407–414.

    CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by grants from the Higher Education Revitalization Project of Anhui Province (2013zdjy057), the Scientific Research Foundation for the Stability and Introduction of the Talents (wd2011-14), the Natural Science Foundation of Anhui Province (1208085MC36) and the Natural Science Research Foundation of Anhui Province (KJ2011A110). We thank members of the Key Laboratory of Crop Biology of Anhui Province for their assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DEFANG GAN.

Additional information

[Gan D., Zhuang D., Ding F., Yu Z. and Zhao Y. 2013 Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus). J. Genet. 92, xx–xx]

Defang Gan and Dan Zhuang conributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

GAN, D., ZHUANG, D., DING, F. et al. Identification and expression analysis of primary auxin-responsive Aux/IAA gene family in cucumber (Cucumis sativus) . J Genet 92, 513–521 (2013). https://doi.org/10.1007/s12041-013-0306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-013-0306-3

Keywords

Navigation