Skip to main content
Log in

QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.)

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Protein is one of the three main storage chemical components in maize grains, and is negatively correlated with starch concentration (SC). Our objective was to analyse the influence of genetic backgrounds on QTL detection for protein concentration (PC) and to reveal the molecular genetic associations between PC and both SC and grain weight (GWP). Two hundred and eighty-four (Pop1) and 265 (Pop2) F2:3 families were developed from two crosses between one high-oil maize inbred GY220 and two normal maize inbreds 8984 and 8622 respectively, and were genotyped with 185 and 173 pairs of SSR markers. PC, SC and GWP were evaluated under two environments. Composite interval mapping (CIM) and multiple interval mapping (MIM) methods were used to detect single-trait QTL for PC, and multiple-trait QTL for PC with both SC and GWP. No common QTL were shared between the two populations for their four and one PC QTL. Common QTL with opposite signs of effects for PC and SC/GWP were detected on three marker intervals at bins 6.07–6.08, 8.03 and 8.03–8.04. Multiple-traits QTL mapping showed that tightly-linked QTL, pleiotropic QTL and QTL having effects with opposite directions for PC and SC/GWP were all observed in Pop1, while all QTL reflected opposite effects in Pop2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berke T. G. and Rocheford T. R. 1995 Quantitative trait loci for flowering, plant ear height and grain traits in maize. Crop Sci. 35, 1542–1549.

    Google Scholar 

  • Blanc G., Charcosset A., Mangin B., Gallais A. and Moreau L. 2006 Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor. Appl. Genet. 113, 206–224.

    Article  PubMed  CAS  Google Scholar 

  • Boyer C. D. and Hannah L. C. 2001 Kernel mutants of corn. In Specialty corns (ed. A. R. Hallauer), pp. 1–31. CRC Press, Boca Raton.

    Google Scholar 

  • Chardon F., Virlon B., Moreau L., Falque M., Joets J., Decousset L. et al. 2004 Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168, 2169–2185.

    Article  PubMed  CAS  Google Scholar 

  • Churchill G. A. and Doerge R. W. 1994 Empirical threshold values for quantitative trait mapping. Genetics 138, 963–971.

    PubMed  CAS  Google Scholar 

  • Clark D., Dudley J. W., Rocheford T. R. and LeDeauxb J. R. 2006 Genetic analysis of corn grain chemical composition in the random mated 10 generation of the cross of generations 70 of IHO × ILO. Crop Sci. 46, 807–819.

    Article  Google Scholar 

  • Dudley J. W. and Lambert R. J. 2004 100 generations of selection for oil and protein in corn. Plant Breed. Rev. 24, 97–110.

    Google Scholar 

  • Dudley J.W., Dijkhuizen A., Paul C., Coates S. T. and Rocheford T. R. 2004 Effects of random mating on marker-QTL associations in the cross of the Illinois high protein × Illinois low protein maize strains. Crop Sci. 44, 1419–1428.

    CAS  Google Scholar 

  • Dudley J. W., Clark D., Rocheford T. R and LeDeaux J. R. 2007 Genetic analysis of corn grain chemical composition in the random mated 7 generation of the cross of generations 70 of IHP × ILP. Crop Sci. 47, 45–57.

    Article  CAS  Google Scholar 

  • Flint-Garcia S. A., Jampatong C., Darrah L. L., and McMullen M. D. 2003 Quantitative trait locus analysis of stalk strength in four maize populations. Crop Sci. 43, 13–22.

    Article  CAS  Google Scholar 

  • Goldman I. L., Rocheford T. R., and Dudley J. W. 1993 Quantitative trait loci influencing protein and starch concentration in the Illinois long term selection maize strains. Theor. Appl. Genet. 87, 217–224.

    Article  CAS  Google Scholar 

  • Groh S., González-de-León D., Khairallah M. M., Jiang C., Bergvinson D., Bohn M. et al. 1998 QTL Mapping in tropical maize: III. Genomic regions for resistance to Diatraea spp. and associated traits in two RIL populations. Crop Sci. 38, 1062–1072.

    Google Scholar 

  • Hallauer A. R. and Mirando F. J. B. 1981 Quantitative genetics in. maize breeding. Iowa State University Press, Ames.

    Google Scholar 

  • Jiang C. and Zeng Z. B. 1995 Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 140, 1111–1127.

    PubMed  CAS  Google Scholar 

  • Kosambi D. D. 1944 The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175.

    Google Scholar 

  • Li Y. L., Dong Y. B. and Niu S. Z. 2006 QTL analysis of popping fold and the consistency of QTLs under two environments in popcorn. Acta Genet. Sinica 33, 1051–1061.

    Article  Google Scholar 

  • Li Y. Y., Dong Y. B., Niu S. Z. and Cui D. Q. 2007 The genetic relationship between plant-height traits using multiple trait QTL mapping of a dent corn and popcorn cross. Genome 50, 357–364.

    Article  PubMed  Google Scholar 

  • Lincolin S., Daly M. and Lander E. 1992 Mapping genetic mapping with MAPMAKEREXP3.0. Whitehead institute, Cambridge, USA.

    Google Scholar 

  • Liu Y. X. 2007 Study on the genetic relationship between Alexho high-oil maize inbreds and normal maize inbreds belonging to different heterotic groups. Ms. D. thesis, Henan Agricultural University, Zhengzhou.

    Google Scholar 

  • Liu Y. Y., Dong Y. B., Niu S. Z., Cui D. Q., Wang Y. Z., Wei M. G. et al. 2008 QTL identification of kernel composition traits with popcorn using both F2:3 and BC2F2 populations developed from the same cross. J. Cereal Sci. 48, 625–631.

    Article  CAS  Google Scholar 

  • Mangolin C. A., de Souza Jr C. L., Garcia A. A. F., Sibov S. T. and de Souza A. P. 2004 Mapping QTLs for kernel oil content in a tropical maize population. Euphytica 137, 251–259.

    Article  CAS  Google Scholar 

  • Melchinger A. E., Utz H. F. and Schon C. C. 1998 Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149, 383–403.

    PubMed  CAS  Google Scholar 

  • Meyer J. D. F., Snook M.E., Houchins K.E., Rector B.G., Widstrom N.W. and McMullen M. D. 2007 Quantitative trait loci for maysin systhesis in maize (Zea mays L.) lines selected for high silk maysin content. Theor. Appl. Genet. 115, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Mihaljevic M., Friedrich U. H. and Melchinger A. E. 2004 Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Sci. 44, 114–124.

    Article  CAS  Google Scholar 

  • Piepho H. P. 2001 A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics 157, 425–432.

    PubMed  CAS  Google Scholar 

  • Stuber C. W., Edwards M. D. and Wendel J. F. 1987 Molecular marker-facilitated investigations of quantitative trait loci in maize. II. Factors influencing yield and its component traits. Crop Sci. 27, 639–648.

    Google Scholar 

  • Wang S., Basten C. J. and Zeng Z. B. 2006 Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).

    Google Scholar 

  • Wang Y. Z. 2007 QTL mapping for kernel nutritional quality characters. and their genetic relationship in maize. Ph.D. thesis, Henan Agricultural University, Zhengzhou.

    Google Scholar 

  • Willmot D. B., Dudley J. W., Rocheford T. R. and Bari A. 2006 Effect of random mating on marker-QTL associations for grain quality traits in the cross of Illinois High Oil ? Illinois Low Oil. Maydica 51, 187–199.

    Google Scholar 

  • Zeng Z. B. 1994 Precision mapping of quantitative trait loci. Genetics 136, 1457–1468.

    PubMed  CAS  Google Scholar 

  • Zhang J., Lu X. Q., Song X. F., Yan J. B., Song T. M., Dai J. R. et al. 2008 Mapping quantitative trait loci for oil, starch, and protein contents in grain with high-oil maize by SSR markers. Euphytica 162, 335–344.

    Article  CAS  Google Scholar 

  • Zheng P. Z., Allen W. B., Roesler K., Williams M. E., Zhang S. R., Li J. M. et al. 2008 A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat. Genet. 40, 367–372.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Wang, Y., Wei, M. et al. QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J Genet 88, 61–67 (2009). https://doi.org/10.1007/s12041-009-0008-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-009-0008-z

Keywords

Navigation