Skip to main content
Log in

Seismological evidence for intra-crustal low velocity and thick mantle transition zones in the north-west Himalaya

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Himalayan region witnesses several natural hazards like earthquakes and landslides due to the continental collisions between the Indian and Eurasian plates. This has given rise to extreme topographic variations throughout the Himalayan belt. The Kumaun–Garhwal region is a classic example of such geological consequences and is prone to several earthquakes. High-quality three-component teleseismic waveform data recorded at seven seismological stations operated by the Wadia Institute of Himalayan Geology (WIHG) are used to investigate the detailed subsurface structure of the crust, the intra-crustal low-velocity layer (LVL), and the upper mantle discontinuities beneath the Kumaun–Garhwal, north-west Himalaya. The results, derived from the inversion of individual station's stacked P-receiver functions (PRFs) using the neighbourhood algorithm approach, show that the crustal thickness varies from 44 to 54 km beneath the study region. The depth of LVL observed beneath six stations from individual and stacked PRFs, varies from 9 to 24 km. The LVL zone with a high Vp/Vs ratio may be due to fluid or partial melt, leading to shallow seismic activity within the study region. The presence of fluid or partial melts in the LVL may be due to the shear heating, cooling, and decompression. The 2D PRF migration image depicts a thick mantle transition zone due to the elevated 410 km discontinuity with respect to the global average values predicted by the IASP91 velocity model. The present research suggests that this might be due to the colder transition zone in this region, indicating the cool underthrust Indian plate with respect to the ambient mantle has reached down to the upper mantle transition zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Acton C E, Priestley K, Mitra S and Gaur V K 2010 Crustal structure of the Darjeeling-Sikkim Himalaya and southern Tibet; Geophys. J. Int. 184(2) 829–852.

    Article  Google Scholar 

  • Ammon J C, Randal G E and Zandt G 1990 On the nonuniqueness of receiver function inversions; J. Geophys. Res. 95 15,303–15,318.

    Article  Google Scholar 

  • Arora B R, Unsworth M J and Rawat G 2007 Deep resistivity structure of the northwest Indian Himalaya and its tectonic implications; Geophys. Res. Lett. 34 L04307, https://doi.org/10.1029/2006GL029165.

    Article  Google Scholar 

  • Avouac J P 2007 Mountain building: From earthquakes to geological deformation. Dynamic processes in extensional and compressional settings; Treatise Geophys. 6 377–439.

  • Avouac J P, Meng L, Wei S, Wang T and Ampuero J P 2015 Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake; Nat. Geosci. 8 708–711.

    Article  Google Scholar 

  • Avouac J P, Ayoub F, Leprince S, Konca O and Helemberger D 2006 The 2005, Mw 7.6 Kashmir Earthquake: Sub-pixel correlation of ASTER images and seismic waveform analysis; Earth Planet. Sci. Lett. 249 514–528.

    Article  Google Scholar 

  • Bai L, Liu H, Ritsema J, Mori J, Zhang T, Ishikawa Y and Li G 2016 Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw 7.8 Gorkha, Nepal, earthquake; Geophys. Res. Lett. 43 637–642, https://doi.org/10.1002/2015GL066473.

    Article  Google Scholar 

  • Banerjee P and Bürgmann R 2002 Convergence across the northwest Himalaya from GPS measurements; Geophys. Res. Lett. 29(13), https://doi.org/10.1029/2002GL015184.

  • Berkhout A J 1977 Least-squares inverse filtering and wavelet deconvolution; Geophysics 42(7) 1369–1383.

    Article  Google Scholar 

  • Bilham R, Larson K, Freymueller J, Jouanne F, LeFort P, Leturmy P, Mugnier J L, Gamond J F, Glot J P, Martinod J and Chaudury N L 1997 GPS measurements of present-day convergence across the Nepal Himalaya; Nature 386(6620) 61–64.

    Article  Google Scholar 

  • Bilham R 2019 Himalayan earthquakes: A review of historical seismicity and early 21st century slip potential; Geol. Soc. London, Spec. Publ. 483 423–482.

    Article  Google Scholar 

  • Bina C R and Helffrich G 1994 Phase transition Clapeyron slopes and transition zone seismic discontinuity topography; J. Geophys. Res. 99(B8) 15,853–15,860.

    Article  Google Scholar 

  • Bollinger L, Henry P and Avouac J 2006 Mountain building in the Nepal Himalaya: Thermal and kinematic model; Earth Planet. Sci. Lett. 244(1–2) 58–71.

    Article  Google Scholar 

  • Bostock M G 2004 Green’s functions, source signatures, and the normalization of teleseismic wave fields; J. Geophys. Res. 109, https://doi.org/10.1029/2003JB002783.

  • Bouchon M and Vallée M 2003 Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake; Science 301 824–826.

  • Borah K, Kanna N, Rai S S and Prakasam K S 2015 Sediment thickness beneath the Indo Gangetic Plain and Siwalik Himalaya inferred from receiver function modelling; J. Asian Earth Sci. 99 41–56.

    Article  Google Scholar 

  • Burdick L J and Langston C A 1977 Modeling crustal structure through the use of converted phases in teleseismic body-wave forms; Bull. Seism. Soc. Am. 67 677–691.

    Article  Google Scholar 

  • Caldwell W B, Klemperer S L, Rai S S and Lawrence J F 2009 Partial melt in the upper-middle crust of the northwest Himalaya revealed by Rayleigh wave dispersion; Tectonophys. 477(1) 58–65.

    Article  Google Scholar 

  • Caldwell W B, Klemperer S L, Lawrence J F and Rai S S 2013 Characterizing the Main Himalayan Thrust in the Garhwal Himalaya, India with receiver function CCP stacking; Earth Planet. Sci. Lett. 367 15–27.

    Article  Google Scholar 

  • Chen J, Gaillard F, Villaros A, Yang X, Laumonier M, Jolivet L, Unsworth M, Hashim L, Scaillet B and Richard G 2018 Melting conditions in the modern Tibetan crust since the Miocene; Nat. Commun. 9, https://doi.org/10.1038/s41467-018-05934-7.

  • Chen W P and Molnar P 1977 Seismic moments of major earthquakes and the average rate of slip in central Asia; J. Geophys. Res. 82 2945–2969.

    Article  Google Scholar 

  • Chen W P and Molnar P 1983 Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere; J. Geophys. Res. 88 4183–4214.

    Article  Google Scholar 

  • Christensen N I 1996 Poisson ratio and crustal seismology; J. Geophys. Res. 101 3139–3156.

    Article  Google Scholar 

  • Duputel Z, Vergne J, Rivera L, Wittlinger G, Farra V and Hetényi G 2016 The 2015 Gorkha earthquake: A large event illuminating the Main Himalayan Thrust fault; Geophys. Res. Lett. 43 2517–2525, https://doi.org/10.1002/2016GL068083.

    Article  Google Scholar 

  • Gao R, Lu Z, Klemperer S L, Wang H, Dong S, Li W and Li H 2016 Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya; Nat. Geosci. 9(1038) 555–560.

    Article  Google Scholar 

  • Gahalaut V K and Gahalaut K 2001 Himalayan mid-crustal ramp; Curr. Sci. 81(12) 1641–1646.

    Google Scholar 

  • Galetzka J et al. 2015 Slip pulse and resonance of Kathmandu basin during the 2015 Mw 7.8 Gorkha earthquake, Nepal imaged with geodesy; Science 349(6252) 1091–1095.

    Article  Google Scholar 

  • Gilligan A, Priestley K F, Roecker S W, Levin V and Rai S S 2015 The crustal structure of the western Himalayas and Tibet; J. Geophys. Res. 120 3946–3964.

    Article  Google Scholar 

  • Gokarn S G, Gupta G, Rao C K and Selvaraj C 2002 Electrical structures across the Indus Tsangpo suture and shyok suture zones in NW Himalaya using Magnetotelluric studies; Geophys. Res. Lett. 29 921–924.

    Article  Google Scholar 

  • Grandin R, Vallée M, Satriano C, Lacassin R, Klinger Y, Simoes M and Bollinger L 2015 Rupture process of the Mw = 7.9 2015 Gorkha earthquake (Nepal): Insights into Himalayan megathrust segmentation; Geophys. Res. Lett. 42 8373–8382.

    Article  Google Scholar 

  • Haldar C, Kumar P and Kumar M R 2014 Seismic structure of the lithosphere and upper mantle beneath the ocean islands near mid-oceanic ridges; Solid Earth 5 327–337.

    Article  Google Scholar 

  • Haldar C, Sain K and Kumar S 2022a Seismic imaging of intra-crustal low velocity layer beneath the Kishtwar region, North-West Himalaya, India using receiver function technique; Himal. Geol. 43(1A) 1–11.

    Google Scholar 

  • Haldar C, Kumar P, Pandey O P, Sain K and Kumar S 2022b Lower crustal intraplate seismicity in Kachchh region (Gujarat, India) triggered by crustal magmatic infusion: Evidence from shear wave velocity contrast across the Moho; Geosys. Geoenviron. 1, https://doi.org/10.1016/j.geogeo.2022b.100073.

  • Haldar C and Sain K 2023 P-receiver function technique; Himal. Geol. 44(1) 106–116.

    Google Scholar 

  • Hammond W C and Humphreys E D 2000 Upper mantle seismic wave velocity: Effects of realistic partial melt geometrics; J. Geophys. Res. 105 10,975–10,986.

    Article  Google Scholar 

  • Haskell N A 1953 The dispersion of surface waves on multilayered media; Bull. Seism. Soc. Am. 43 17–34.

    Article  Google Scholar 

  • Harinarayana T, Azeez A, Naganjaneulu K, Manoj K, Veeraswamy C, Murthy K, Prabhakar D and Eknath R S 2004 Magnetotulluric studies in Puga valley geothermal field, NW Himalaya, Jammu and Kashmir, India; J. Volcanol. Geotherm. Res. 138 405–424.

    Article  Google Scholar 

  • Harrison T M, Grove M, Lovera O M and Catlos E J 1998 A model for the origin of Himalayan anatexis and inverted metamorphism; J. Geophys. Res. 103(27) 017–027.

    Google Scholar 

  • Hazarika D, Sen K and Kumar N 2014 Characterizing the intracrustal low velocity zone beneath northwest India-Asia collision zone; Geophys. J. Int. 199 1338–1353.

    Article  Google Scholar 

  • Hajra S, Hazarika D, Bankhwal M, Kundu A and Kumar N 2019 Average crustal thickness and Poisson’s ratio beneath the Kali River Valley, Kumaon Himalaya; J. Asian Earth Sci. 173 176–188.

    Article  Google Scholar 

  • Hazarika D, Wadhawan M, Paul A, Kumar N and Borah K 2017 Geometry of the Main Himalayan Thrust and Moho beneath Satluj valley, northwest Himalaya: Constraints from receiver function analysis; J. Geophys. Res. 122 2929–2945.

    Article  Google Scholar 

  • Helffrich G 2000 Topography of the transition zone seismic discontinuities; Rev. Geophys. 38(1) 141–158.

    Article  Google Scholar 

  • Helffrich G 2006 Extended-time multitaper frequency domain cross-correlation receiver-function estimation; Bull. Seism. Soc. Am. 96(1) 344–347.

    Article  Google Scholar 

  • Hetényi G, Cattin R, Vergne J and Nábělek J L 2006 The effective elastic thickness of the India plate from receiver function imaging, gravity anomalies and thermomechanical modelling; Geophys. J. Int. 167 1106–1118.

    Article  Google Scholar 

  • Hyndmann R D and Shearer P M 1989 Water in the lower continental crust: Modelling magnetotelluric and seismic reflection results; Geophys. J. Lnt. 98 343–365.

    Article  Google Scholar 

  • Israil M, Tyagi D, Gupta P and Niwas S 2008 Investigations for imaging electrical structure of Garhwal Himalaya corridor, Uttarakhand, India; J. Earth Syst. Sci. 117 189–200.

    Article  Google Scholar 

  • Ito E and Katsura T 1989 A temperature profile of mantle transition zone; Geophys. Res. Lett. 16(5) 425–428.

    Article  Google Scholar 

  • Jones A G 1992 Electrical properties of the lower continental crust; Continent. Lower Crust, Develop. Geotecton. 23 81–143.

    Google Scholar 

  • Jasbinsek J J, Dueker K G and Hansen S M 2010 Characterizing the 410-km discontinuity low-velocity layer beneath LA RISTRA array in the north American southwest; Geochem. Geophys. Geosyst. 11(3) Q03008, https://doi.org/10.1029/2009GC002836.

    Article  Google Scholar 

  • Kanna N and Gupta S 2020 Crustal seismic structure beneath the Garhwal Himalaya using regional and teleseismic waveform modelling; Geophys. J. Int. 222 2040–2052.

    Article  Google Scholar 

  • Karato S I, Bercovici D, Leahy G, Richard G and Jing Z 2006 The transition-zone water filter model for global material circulation, where we stand?; In: Earth’s Deep Water Cycle (eds) Jacobsen S D and vander Lee S, Geophys. Monograph Series, Am. Geophysical Union, Washington D.C., 168 289–313.

  • Kawakatsu H, Kumar P, Takei Y, Shinohara M, Kanazawa T, Araki E and Suyehiro K 2009 Seismic evidence for sharp lithosphere-asthenosphere boundaries of oceanic plates; Science 324 499–502.

    Article  Google Scholar 

  • Kayal J R 1996 Precursor seismicity, foreshocks and aftershocks of the Uttarkashi earthquake of October 20, 1991 at Garhwal Himalaya; Tectonophys. 263 339–345.

    Article  Google Scholar 

  • Kennett B L N and Engdah E R 1991 Traveltimes for global earthquake location and phase identification; Geophys. J. Int. 105 429–465.

    Article  Google Scholar 

  • Kind R and Vinnik L 1988 The upper-mantle discontinuities underneath the GRF array from P-to-S converted phases; J. Geophys. 62 138–147.

    Google Scholar 

  • Klemperer S L 2006 Crustal flow in Tibet: Geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow; Geol. Soc. London, Spec. Publ. 268(1) 39–70.

  • Kosarev G L, Oreshin S I, Vinnik L P, Kiselev S G, Dattatrayam R S, Suresh G and Baidya P R 2013 Heterogeneous lithosphere and the underlying mantle of the Indian subcontinent; Tectonophys. 592 175–186.

    Article  Google Scholar 

  • Kumar N, Aoudia A, Guidarelli M, Babu V G, Hazarika D and Yadav D K 2019 Delineation of lithosphere structure and characterization of the Moho geometry under the Himalaya-Karakoram-Tibet collision zone using surface-wave tomography; Geol. Soc. London, Spec. Publ. 481(1), https://doi.org/10.1144/SP481-2017-172.

  • Kumar P, Kind R and Yuan X 2010 Receiver function summation without deconvolution; Geophys. J. Int. 180 1223–1230.

    Article  Google Scholar 

  • Kumar P, Kawakatsu H, Shinohara M, Kanazawa T, Araki E and Suyehiro K 2011 P and S receiver function analysis of seafloor borehole broadband seismic data; J. Geophys. Res. 116 B12308, https://doi.org/10.1029/2011JB008506.

    Article  Google Scholar 

  • Kumar P and Kawakatsu H 2011 Imaging the seismic lithosphere-asthenosphere boundary of the oceanic plate; Geochem. Geophys. Geosyst. 12 Q01006, https://doi.org/10.1029/2010GC003358.

    Article  Google Scholar 

  • Kumar P, Kind R, Priestley K and Dahl-Jensen T 2007 Crustal structure of Iceland and Greenland from receiver function studies; J. Geophys. Res. 112 B03301, https://doi.org/10.1029/2005JB003991.

    Article  Google Scholar 

  • Kumar P, Talukdar K and Sen M K 2014 Lithospheric Structure below Transantarctic Mountain using Receiver Function Analysis of TAMSEIS Data; J. Geol. Soc. India 83 483–492.

    Article  Google Scholar 

  • Kumar P, Sen G, Mandal P and Sen M K 2016 Shallow lithosphere-asthenosphere boundary beneath Cambay rift zone of India: Inferred presence of Carbonated partial melt; J. Geol. Soc. India 88 401–406.

    Article  Google Scholar 

  • Langston C A 1977 The effect of planar dipping structure on source and receiver responses for constant ray parameter; Bull. Seismol. Soc. Am. 67 1029–1050.

    Google Scholar 

  • Langston C A 1979 Structure under Mount Rainier, Washington, inferred from teleseismic body waves; J. Geophys. Res. 84 4749–4762.

    Article  Google Scholar 

  • Langston C A 1981 Evidence for the subducting lithosphere under southern Vancouver Island and western Oregon from teleseismic P wave conversions; J. Geophys. Res. 86 3857–3866.

    Article  Google Scholar 

  • Lavé J and Avouac J P 2001 Fluvial incision and tectonic uplift across the Himalayas of central Nepal; J. Geophys. Res. 106 26,561–26,591.

    Article  Google Scholar 

  • Lemonnier C, Marquis G, Perrier F, Avouac J P, Chitrakar G, Kafle B and Bano M 1999 Electrical tructure of the Himalaya of central Nepal: High conductivity around the mid-crustal ramp along the MHT; J. Geophys. Res. 26 3261–3264.

    Google Scholar 

  • Ligorrfa J P and Ammon C J 1999 Iterative deconvolution and receiver-function estimation; Bull. Seismol. Soc. Am. 89(5) 1395–1400.

    Article  Google Scholar 

  • Liu J Z, Zhang Z, Wen L P, Tapponnier J, Sun X, Xing G, Hu Q, Xu L, Zeng L, Ding C, Ji K W, Hudnut J and Van der W 2009 Co-seismic ruptures of the 12 May, 2008, Mw 8.0 Wenchuan earthquake, Sichuan: East–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet; Earth Planet. Sci. Lett. 286 355–370.

    Google Scholar 

  • Lyon-Caen H and Molnar P 1985 Gravity anomalies, flexure of the Indian plate, and the structure, support and evolution of the Himalaya and Ganga Basin; Tectonics 4(6) 513–538.

    Article  Google Scholar 

  • Mahesh P, Rai S S, Sivaram K, Paul A, Gupta S, Sarma R and Gaur V K 2013 One-dimensional reference velocity model and precise locations of earthquake hypocenters in the Kumaon-Garhwal Himalaya; Bull. Seismol. Soc. Am. 103(1) 328–339.

    Article  Google Scholar 

  • Mahesh P, Gupta S, Rai S and Sarma P R 2012 Fluid driven earthquakes in the Chamoli Region, Garhwal Himalaya: Evidence from local earthquake tomography; Geophys. J. Int. 191(3) 1295–1304.

    Google Scholar 

  • Mavko G M 1980 Velocity and attenuation in partially molten rocks; J. Geophys. Res. 85(B10) 5173–5189.

    Article  Google Scholar 

  • Mitra S, Priestley K, Bhattacharyya A K and Gaur V K 2005 Crustal structure and earthquake focal depths beneath northeastern India and southern Tibet; Geophys. J. Int. 160 227–248.

    Article  Google Scholar 

  • Middlemiss C S 1910 The Kangra earthquake of 4 April 1905; Mem. Geol. Surv. India 38 405.

    Google Scholar 

  • Mohan G, Rai S and Panza G 1992 Seismic heterogeneities in the Indian lithosphere; Phys. Earth Planet. Inter. 73 189–198.

  • Molnar P and Tapponnier P 1975 Cenozoic tectonics of Asia: Effects of a continental collision; Science 189(4201) 419–426.

    Article  Google Scholar 

  • Molnar P and Atwater T 1973 Relative motion of hot spots in the mantle; Nature 246 288–291.

    Article  Google Scholar 

  • Mukhopadhyay S and Kayal J R 2003 Seismic tomography structure of the 1999 Chamoli earthquake source area in the Garhwal Himalaya; Bull. Seismol. Soc. Am. 93(4) 1854–1861.

    Article  Google Scholar 

  • Nábělek J, Hetényi G, Vergne J, Sapkota S, Kafle B, Jiang M and Huang B S 2009 Underplating in the Himalaya–Tibet collision zone revealed by the Hi-CLIMB experiment; Science 325(5946) 1371–1374.

    Article  Google Scholar 

  • Nabelek P I and Nabelek J L 2014 Thermal characteristics of the Main Himalaya Thrust and the Indian lower crust with implications for crustal rheology and partial melting in the Himalaya orogen; Earth Planet. Sci. Lett. 395 116–123.

    Article  Google Scholar 

  • Nabelek P I, Whittington A G and Hofmeister A M 2010 Strain heating as a mechanism for partial melting and ultrahigh temperature metamorphism in convergent orogens, implications of temperature-dependent thermal diffusivity and rheology; J. Geophys. Res. 115 B12317.

    Google Scholar 

  • Ni J and Barazangi M 1984 Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya; J. Geophys. Res. 89 1147–1163.

    Article  Google Scholar 

  • O’Connell R J and Budiansky B 1974 Seismic velocities in dry and saturated cracked solids; J. Geophys. Res. 86 5412–5425.

    Article  Google Scholar 

  • Oreshin S, Kiselev S, Vinnik L, Surya Prakasam K, Rai S S, Makeyeva L and Savvin Y 2008 Crust and mantle beneath western Himalaya, Ladakh and western Tibet from integrated seismic data; Earth Planet. Sci. Lett. 271 75–87.

    Article  Google Scholar 

  • Pappachen J P, Rajesh S, Gautam P K and Paul S K 2021 Crustal velocity and interseismic strain–rate on possible zones for large earthquakes in the Garhwal–Kumaun Himalaya; Sci. Rep. 11 21283.

    Article  Google Scholar 

  • Priestley M J N, Verma R and Xiao Y 1994 Seismic shear strength of reinforced concrete columns; J. Struct. Eng. ASCE 120(8) 2310–2239.

    Article  Google Scholar 

  • Pandey M R, Tandukar R P, Avouac J P, Lavé J and Massot J P 1995 Interseismic strain accumulation on the Himalayan crustal ramp (Nepal); Geophys. Res. Lett. 22 751–754.

    Article  Google Scholar 

  • Petersen N, Vinnik L, Kosarev G, Kind R, Oreshin S and Stammler K 1993 Sharpness of the mantle discontinuities; Geophys. Res. Lett. 20 859–862.

    Article  Google Scholar 

  • Powers P M, Lillie R J and Yeats R S 1998 Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya, India; Geol. Soc. Am. Bull. 110(8) 1010–1027.

    Article  Google Scholar 

  • Prasad B R, Klemperer S L, Rao V V, Tewari H C and Khare P 2011 Crustal structure beneath the Sub-Himalayan fold-thrust belt, Kangra recess, northwest India, from seismic reflection profiling: Implications for Late Paleoproterozoic orogenesis and modern earthquake hazard; Earth Planet. Sci. Lett. 308(1) 218–228.

    Article  Google Scholar 

  • Rabinowicz M and Vigneresse J L 2004 Melt segregation under compaction and shear channeling: Application to granitic magma segregation in a continental crust; J. Geophys. Res. B 109 B04407, https://doi.org/10.1029/2002JB002372.

    Article  Google Scholar 

  • Rawat G, Arora B R and Gupta P K 2014 Electrical resistivity cross-section across the Garhwal Himalaya: Proxy to fluid-seismicity linkage; Tectonophys. 637 68–79.

    Article  Google Scholar 

  • Reading A M, Kennett B L N and Goleby B 2007 New constraints on the seismic structure of West Australia: Evidence for terrane stabilization prior to the assembly of an ancient continent?; Geology 35 379–382.

    Article  Google Scholar 

  • Saikia D, Kumar M R and Singh A 2020 Palaeoslab and plume signatures in the mantle transition zone beneath eastern Himalaya and adjoining regions; Geophys. J. Int. 221 468–477.

    Article  Google Scholar 

  • Sarkar I and Saraf A 2000 Some observations of the Chamoli earthquake-induced damage using ground and satellite data; Curr. Sci. 78(1) 91–97.

    Google Scholar 

  • Sambridge M 1998 Exploring multidimensional landscapes without a map; Inverse Probl. 14(3) 410–427.

    Article  Google Scholar 

  • Sambridge M 1999a Geophysical inversion with a neighbourhood algorithm – I. Searching a parameter space; Geophys. J. Int. 138 479–494.

    Article  Google Scholar 

  • Sambridge M 1999b Geophysical inversion with a neighbourhood algorithm – II. Appraising the ensemble; Geophys. J. Int. 138(3) 727–746.

    Article  Google Scholar 

  • Schelling D and Arita K 1991 Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal Himalaya; Tectonics 10 851–862.

    Article  Google Scholar 

  • Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey M R, Sapkota S, Bilham R and Wu F 2005 Imaging the Indian subcontinent beneath the Himalaya; Nature 435(7046) 1222–1225.

    Article  Google Scholar 

  • Seeber L and Armbruster J G 1981 Great detachment earthquakes along the Himalayan arc and long-term forecasting, in Earthquake Prediction – An International Review; Manrice Ewing Ser. 4 (eds) Simpson D W and Richards P G, AGU, pp. 259–277.

  • Srivastava P and Mitra G 1994 Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt; Tectonics 13 89–109.

    Article  Google Scholar 

  • Singh A and Kumar M R 2009 Seismic signatures of detached lithospheric fragments in the mantle beneath eastern Himalaya and southern Tibet; Earth Planet. Sci. Lett. 288 279–290.

    Article  Google Scholar 

  • Smyth J R and Frost D 2002 The effect of water on 410 km discontinuity: An experimental study; Geophys. Res. Lett. 29(10) 1485, https://doi.org/10.1029/2001GL014418.

    Article  Google Scholar 

  • Smyth J and Jacobsen S 2006 Nominally anhydrous minerals and Earth’s deep water cycle; In: Earth’s Deep Water Cycle (eds) Jacobsen S and vander Lee S, AGU Monograph Series Washington, D.C., 168.

  • Stammler K 1993 Seismic Handler: Programmable multichannel data handler for interactive and automatic processing of seismological analysis; Comput. Geosci. 19 135–140.

    Article  Google Scholar 

  • Szeliga W and Bilham R 2017 New constraints on the mechanism and rupture area for the M7.8 Kangra 1905 earthquake, NW Himalaya; Bull. Seismol. Soc. Am. 107 2467–2479.

    Article  Google Scholar 

  • Thakur V C, Sriram V and Mundepi A K 2000 Seismotectonics of the great 1905 Kangra earthquake meizoseismal region in Kangra-Chamba, NW Himalaya; Tectonophys. 326(3) 289–298.

    Article  Google Scholar 

  • Thomson W T 1950 Transmission of elastic waves through a stratified solid; J. Appl. Phys. 21 89–93.

    Article  Google Scholar 

  • Unsworth M J, Jones A G, Wei W, Marquis G, Gokarn S G, Spratt J E and Roberts B 2005 Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data; Nature 438(7064) 78–81.

    Article  Google Scholar 

  • Vinnik L P 1977 Detection of waves converted from P to SV in the mantle; Phys. Earth Planet. Inter. 15(1) 39–45.

    Article  Google Scholar 

  • Vinnik L P and Farra V 2007 Low S velocity atop the 410-km discontinuity and mantle plumes; Earth Planet. Sci. Lett. 262 398–412.

    Article  Google Scholar 

  • Wadia D N 1931 The syntaxis of the northwest Himalaya: Its rocks, tectonics and orogeny; Rec. Geol. Surv. India 65 189–220.

    Google Scholar 

  • Wessel P and Smith W H F 1998 New improved version of generic mapping tools released; EOS Trans. AGU 79(47) 579, https://doi.org/10.1029/98EO00426.

    Article  Google Scholar 

  • Yagi Y and Okuwaki R 2015 Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake; Geophys. Res. Lett. 42 6229–6235.

    Article  Google Scholar 

  • Yuan X, Ni J, Kind R, Mechie J and Sandvol E 1997 Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment; J. Geophys. Res. 102(27) 491–500.

    Google Scholar 

  • Yin A 2006 Cenozoic tectonic evolution of the Himalayan orogen as constrained by a long-strike variation of structural geometry, exhumation history, and foreland sedimentation; Earth Sci. Rev. 76(1) 1–131.

    Article  Google Scholar 

  • Yeck W L, Sheehan A F and Schulte-Pelkum V 2013 Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins; Bull. Seism. Soc. Am. 103 2142–2150.

    Article  Google Scholar 

  • Zhang Y, Feng W P, Xu L S, Zhou C H and Chen Y T 2009 Spatio-temporal rupture process of the 2008 great Wenchuan earthquake; Sci. China Ser. D Earth Sci. 52 145–154.

    Article  Google Scholar 

  • Zhao J, Yuan X, Liu H, Kumar P, Pei S, Kind R, Zhang Z, Teng J, Ding L, Gao X, Xu Q and Wang W 2010 The boundary between the Indian and Asian tectonic plates below Tibet; Proc. Natl. Acad. Sci. USA 107 11,229–11,233.

    Article  Google Scholar 

  • Zhu L P 2000 Crustal structure across the San Andreas Fault, southern California from teleseismic converted waves; Earth Planet. Sci. Lett. 179 183–190.

    Article  Google Scholar 

  • Zilio D L, Jolivet R and van Dinther Y 2020 Segmentation of the main Himalayan thrust illuminated by bayesian inference of interseismic coupling; Geophys. Res. Lett. 47(4) 1–10.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director of the Wadia Institute of Himalayan Geology, Dehradun, India, for providing support and all necessary facilities and permission to publish this work. NK thanks the SERB, the Department of Science and Technology, Government of India for funding the research project. Seismic Handler software (Stammler 1993) is used for seismological data analysis. Generic Mapping Tool (Wessel and Smith 1998) is used for plotting. KS acknowledges the SERB-DST for providing him with the J.C. Bose National Fellowship. This is a Wadia contribution No. WIHG/0186.

Author information

Authors and Affiliations

Authors

Contributions

Narendra Kumar: Data collection, data analysis, writing – review and editing. Chinmay Haldar: Conceptualization, data analysis, visualization, writing – original draft, review and editing. Kalachand Sain: Writing – review and editing.

Corresponding author

Correspondence to Chinmay Haldar.

Additional information

Communicated by Sagarika Mukhopadhyay

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Haldar, C. & Sain, K. Seismological evidence for intra-crustal low velocity and thick mantle transition zones in the north-west Himalaya. J Earth Syst Sci 132, 89 (2023). https://doi.org/10.1007/s12040-023-02109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02109-x

Keywords

Navigation