Skip to main content
Log in

Magmatic-hydrothermal evolution of the Sung Valley Carbonatite, northeastern India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The Sung Valley ultramafic–alkaline–carbonatite–complex (UACC) occurs as early Cretaceous intrusive body within the Proterozoic low-grade metapelites in the eastern Shillong Plateau, India. Carbonatites are the youngest unit of the UACC and occur as small dykes. The magmatic assemblage in the carbonatites consists of calcite, dolomite, fluoroapatite, phlogopite, pyrrhotite, magnetite and pyrochlore. Application of calcite-dolomite thermometry yielded a maximum temperature of ~670°C, constraining the lower limit of liquidus temperature for the Sung Valley Carbonatite (SVC). Magnetite-ilmenite thermometry provided an average temperature of ~540°C and fO2 range of −27 to −17 log units. The lower temperature and fO2 estimates using magnetite-ilmenite thermobarometry most likely indicate sub-solidus re-equilibration. Stability calculations in the system Fe–S–O–H suggest a pH range of 8.5−9.5 and maximum fO2 of −19.5 log units for the observed magnetite-pyrrhotite equilibrium. Textural evidences of pyrite replacing pyrrhotite and barite precipitation suggest an increase in the fO2 conditions during hydrothermal alteration of the SVC. The rare occurrence of hydrotalcite replacing magnetite and spinel suggests low-temperature hydrothermal alteration in conditions of increasing pH. The increase in pH during hydrothermal alteration in the SVC is further conformed by the replacement of Ta-, Nb-rich magmatic pyrochlore by Ta-, Nb-poor hydrothermal pyrochlore. The similarity of rare earth element (REE) patterns of calcite and apatite (normalised to chondrite) with whole-rock and the increase in pH during hydrothermal alteration in the SVC, which restricted REE remobilisation, collectively suggest that apatite and calcite account for the REE budget in the SVC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Andersen D J and Lindsley D H 1985 New (and final!) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer; Spring Meeting Eos Transactions American Geophysical Union; Am. Geophys. Union: Washington DC, USA 416.

  • Anovitz L M and Essene E J 1987 Phase equilibria in the system CaCO3–MgCO3–FeCO3; J. Petrol. 28(2) 389–415.

    Article  Google Scholar 

  • Bardoloi A, Mazumdar A C and Chowdhary P K 1994 Polyphase deformation and fold geometry study of the Precambrian Gneissic Complex around Nalanga hill, Goalpara district, Assam; Indian J. Earth Sci. 21 236–246.

    Google Scholar 

  • Bhattacharjee C C and Baruah N C 1973 The study of joints in relation to the folding episodes in the Pre-Cambrian rocks of the Hahim area; J. Assam Sci. Soc. 16 54–62.

    Google Scholar 

  • Bickle M J and Powell R 1977 Calcite-dolomite geothermometry for iron-bearing carbonates; Contrib. Mineral. Petrol. 59(3) 281–292.

    Article  Google Scholar 

  • Buddington A F and Lindsley D H 1964 Iron-titanium oxide minerals and synthetic equivalents; J. Petrol. 5(2) 310–357.

    Article  Google Scholar 

  • Chakhmouradian A R, Reguir E P and Zaitsev A N 2016 Calcite and dolomite in intrusive carbonatite. I. Textural variations; Mineral. Petrol. 110(2) 333–360.

    Article  Google Scholar 

  • Chakhmouradian A R, Reguir E P, Zaitsev A N, Couëslan C, Xu C, Kynický J, Mumin A H and Yang P 2017 Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance; Lithos 274 188–213.

    Article  Google Scholar 

  • Chatterjee N, Mazumdar A C, Bhattacharya A and Saikia R R 2007 Mesoproterozoic granulites of the Shillong–Meghalaya Plateau: Evidence of westward continuation of the Prydz Bay Pan-African suture into northeastern India; Precamb. Res. 152 1–26.

    Article  Google Scholar 

  • Chatterjee N, Bhattacharya A, Duarah B P and Mazumdar A C 2011 Late Cambrian reworking of Palaeo-Mesoproterozoic granulites in Shillong-Meghalaya Gneissic Complex (northeast India): Evidence from PT pseudosection analysis and monazite chronology and implications for East Gondwana assembly; J. Geol. 119 311–330.

    Article  Google Scholar 

  • Chen W and Simonetti A 2013 In-situ determination of major and trace elements in calcite and apatite, and U–Pb ages of apatite from the Oka carbonatite complex: Insights into a complex crystallisation history; Chem. Geol. 353 151–172.

    Article  Google Scholar 

  • Choudhary S, Sen K, Kumar S, Rana S and Ghosh S 2020 Forsterite reprecipitation and carbon dioxide entrapment in the lithospheric mantle during its interaction with carbonatite melt: A case study from the Sung Valley ultramafic–alkaline–carbonatite complex, Meghalaya, NE India; Geol. Mag. 158(3) 475–486.

    Article  Google Scholar 

  • Das Gupta A B and Biswas A K 2000 Geology of Assam:Banglore; J. Geol. Soc. India 169.

  • Dare S A, Barnes S J, Beaudoin G, Méric J, Boutroy E and Potvin-Doucet C 2014 Trace elements in magnetite as petrogenetic indicators; Miner. Deposita 49(7) 785–796.

    Article  Google Scholar 

  • Dupuis C and Beaudoin G 2011 Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types; Miner. Deposita 46(4) 319–335.

    Article  Google Scholar 

  • Evans P 1964 The tectonic framework of Assam; J. Geol. Soc. India 5 88–96.

    Google Scholar 

  • Farrell S, Bell K and Clark I 2010 Sulphur isotopes in carbonatites and associated silicate rocks from the Superior Province, Canada; Mineral. Petrol. 98(1) 209–226.

    Article  Google Scholar 

  • Ganuza M L, Castro S M, Ferracutti G, Bjerg E A and Martig S R 2012 Spinelviz: An interactive 3d application for visualising spinel group minerals; Comput. Geosci. 48 50–56.

    Article  Google Scholar 

  • Ghosh S, Fallick A E, Paul D K and Potts P J 2005 Geochemistry and origin of Neoproterozoic granitoids of Meghalaya, northeast India: Implications for linkage with amalgamation of Gondwana supercontinent; Gondwana Res. 8 421–432.

  • Gittins J 1979 Problems inherent in the application of calcite-dolomite geothermometry to carbonatites; Contrib. Mineral. 69(1) 1–4.

    Article  Google Scholar 

  • Goldsmith J R and Newton R C 1969 P-T–X relations in the system CaCO–MgCO, at high temperatures and pressures; Am. J. Sci. 267 160–190.

    Google Scholar 

  • Grguric B A, Madsen I C and Pring A 2001 Woodallite a new chromium analogue of iowaite from the Mount Keith nickel deposit, Western Australia; Mineral. Mag. 65(3) 427–435.

    Article  Google Scholar 

  • Gupta R P and Sen A K 1988 Imprints of Ninety-East Ridge in the Shillong Plateau, Indian Shield; Tectonophys. 154 335–341.

    Article  Google Scholar 

  • Gysi A P and Williams-Jones A E 2013 Hydrothermal mobilisation of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model; Geochim. Cosmochim. Acta 122 324–352.

    Article  Google Scholar 

  • Hazarika P, Bhuyan N, Upadhyay D, Abhinay K and Singh N N 2019 The nature and sources of ore-forming fluids in the Bhukia gold deposit, Western India: Constraints from chemical and boron isotopic composition of tourmaline; Lithos 350 105227.

    Article  Google Scholar 

  • Hogarth D D 1977 Classification and nomenclature of the pyrochlore group; Am. Mineral. 62(5–6) 403–410.

    Google Scholar 

  • Ivanyuk G Y, Kalashnikov A O, Pakhomovsky Y A, Bazai A V, Goryainov P M, Mikhailova J A, Yakovenchuk V N and Konopleva N G 2017 Subsolidus evolution of the magnetite-spinel-ulvöspinel solid solutions in the Kovdor phoscorite–carbonatite complex, NW Russia; Minerals 7(11) 215.

    Article  Google Scholar 

  • Johnson J W, Oelkers E H and Helgeson H C 1992 SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 C; Comput. Geosci. 18(7) 899–947.

    Article  Google Scholar 

  • Kretz R 1983 Symbols for rock-forming minerals; Am. Min. 68(1–2) 277–279.

    Google Scholar 

  • Krishnamurthy P 1985 Petrology of the carbonatites and associated rocks of Sung Valley, Jaintia hills district, Meghalaya, India; J. Geol. Soc. India 26(6) 361–379.

    Google Scholar 

  • Kumar S, Rino V, Hayasaka Y, Kimura K, Raju S, Terada K and Pathak M 2017 Contribution of Columbia and Gondwana supercontinent assembly and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U–Pb SHRIMP zircon geochronology and geochemistry; Lithos 277 356–377.

    Article  Google Scholar 

  • Lal R K, Ackermand D, Seifert F and Haldar S K 1978 Chemographic relationships in sapphirine-bearing rocks from Sonapahar, Assam, India; Contrib. Mineral. Petrol. 67 169–187.

    Article  Google Scholar 

  • Lepage L D 2003 ILMAT: An Excel worksheet for ilmenite–magnetite geothermometry and geobarometry; Comput. Geosci. 29 673–678.

    Article  Google Scholar 

  • Letargo C M, Lamb W M and Park J S 1995 Comparison of calcite+dolomite thermometry and carbonate+silicate equilibria: Constraints on the conditions of metamorphism of the Llano uplift, central Texas, USA; Am. Mineral. 80(1–2) 131–143.

    Article  Google Scholar 

  • Lindsley D H 1965 Iron-titanium oxides; Carnegie Inst. Washington Yearbook 64 144–148.

    Google Scholar 

  • Mazumder S K 1976 A summary of the Precambrian geology of the Khasi Hills, Meghalaya; Geol. Surv. India Misc. Publ. 23 311–324.

    Google Scholar 

  • Mazumder S K 1986 The Precambrian framework of part of the Khasi Hills, Meghalaya; Rec. GSI 1(2) 1–59.

  • Melluso L, Srivastava R K, Guarino V, Zanetti A and Sinha A K 2010 Mineral compositions and petrogenetic evolution of the ultramafic-alkaline–carbonatitic complex of Sung Valley, northeastern India; Can. Mineral. 48(1) 205–229.

    Article  Google Scholar 

  • Milani L, Bolhar R, Cawthorn R G and Frei D 2017 In-situ LA–ICP-MS and EPMA trace element characterisation of Fe–Ti oxides from the phoscorite–carbonatite association at Phalaborwa, South Africa; Miner Deposita 52(5) 747–768.

    Article  Google Scholar 

  • Mitchell R H and Krouse H R 1975 Sulphur isotope geochemistry of carbonatites; Geochim. Cosmochim. Acta 39(11) 1505–1513.

    Article  Google Scholar 

  • Mitra S C 1999 Specialised thematic mapping around Rongjeng-Dudhnoi Lineament with emphasis on preliminary geochemical assessment of mineral potentiality; Rec. Geol. Surv. India 130 6.

    Google Scholar 

  • Méric J 2011 Caractérisation géochimiques des magnétites de la zone critique de l’intrusion magmatique de Sept-Iles (Québec, Canada) et intégration a une base de données utilisant la signature géochimique des oxydes de fer comme outil d’exploration Université du Québec à Chicoutimi-Université Montpellier 2; Université Du Québec à Chicoutimi-Université Montpellier 2 48.

    Google Scholar 

  • Nandy D R 2001 Geodynamics of thenortheastern India and the adjoining region; Acb. Publ 209.

  • Palme H and O’Neill H S C 2014 Cosmochemical estimates of mantle composition; Treatise Geochem. 2 1–39.

  • Patel A K, Mishra B, Upadhyay D and Pruseth K L 2022 Mineralogical and geochemical evidence of dissolution-reprecipitation controlled hydrothermal rare earth element mineralisation in the Amba Dongar Carbonatite Complex, Gujarat, western India; Econ. Geol. 117(3) 683–702.

    Article  Google Scholar 

  • Ray J S, Ramesh R and Pande K 1999 Carbon isotopes in Kerguelen plume-derived carbonatites: evidence for recycled inorganic carbon; Earth Planet. Sci. Lett. 170(3) 205–214.

    Article  Google Scholar 

  • Ray J S, Trivedi J R and Dayal A M 2000 Strontium isotope systematics of Amba Dongar and Sung Valley carbonatite-alkaline complexes, India: Evidence for liquid immiscibility, crustal contamination and long-lived Rb/Sr enriched mantle sources; J. Asian Earth Sci. 18(5) 585–594.

    Article  Google Scholar 

  • Ray J S and Pande K 2001 40Ar–39Ar age of carbonatite-alkaline magmatism in Sung Valley, Meghalaya, India; J. Earth Syst. Sci. 110(3) 185–190.

    Article  Google Scholar 

  • Reguir E P, Chakhmouradian A R, Halden N M, Yang P and Zaitsev A N 2008 Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania; Canad. Mineral. 46(4) 879–900.

    Article  Google Scholar 

  • Sadiq M, Ranjith A and Umrao R K 2014 REE mineralisation in the carbonatites of the Sung Valley ultramafic–alkaline–carbonatite complex, Meghalaya, India; Cent. Eur. Geol. 6(4) 457–475.

    Google Scholar 

  • Sadiq M and Umrao R K 2020 Nb–Ta-rare earth element mineralisation in titaniferous laterite cappings over Sung Valley ultramafic rocks in Meghalaya, India; Ore Geol. Rev. 120 103439.

    Article  Google Scholar 

  • Sen A K 1999 Origin of the Sung Valley carbonatite complex, Meghalaya, India: major element geochemistry constraints; Geol. Soc. India 53(3) 285–297.

    Google Scholar 

  • Stanimirova T, Stoilkova T and Kirov G 2007 Cation selectivity during re-crystallisation of Layered Double Hydroxides from mixed (Mg, Al) oxides; Geochem. Mineral. Petrol. 45 119–127.

    Google Scholar 

  • Srivastava R K and Sinha A K 2004 Early Cretaceous Sung Valley ultramafic-alkaline-carbonatite complex, Shillong Plateau, northeastern India: Petrological and genetic significance; Mineral. Petrol. 80(3) 241–263.

    Article  Google Scholar 

  • Srivastava R K, Heaman L M, Sinha A K and Shihua S 2005 Emplacement age and isotope geochemistry of Sung Valley alkaline–carbonatite complex, Shillong Plateau, northeastern India: implications for primary carbonate melt and genesis of the associated silicate rocks; Lithos 81(1–4) 33–54.

    Article  Google Scholar 

  • Srivastava R K, Guarino V, Wu F Y, Melluso L and Sinha A K 2019 Evidence of sub-continental lithospheric mantle sources and open-system crystallisation processes from in-situ U-Pb ages and Nd–Sr–Hf isotope geochemistry of the Cretaceous ultramafic–alkaline–(carbonatite) intrusions from the Shillong Plateau, northeastern India; Lithos 330 108–119.

    Article  Google Scholar 

  • Srivastava R K, Guarino V and Melluso L 2022 Early Cretaceous ultramafic-alkaline-carbonatite magmatism in the Shillong Plateau-Mikir Hills, northeastern India- synthesis; Mineral. Petrol., https://doi.org/10.1007/s00710-022-00777-z.

    Article  Google Scholar 

  • Taylor S R and McLennan S M 1985 The continental crust: Its composition and evolution; Blackwells Scientific, Oxford, 312p.

  • Thy P 1982 Titanomagnetite and ilmenite in the Fongen-Hyllingen basic complex, Norway; Lithos 15(1) 1–16.

    Article  Google Scholar 

  • Wang Z Y, Fan H R, Zhou L, Yang K F and She H D 2020 Carbonatite-related REE deposits: An overview; Minerals 10(11) 965.

    Article  Google Scholar 

  • Williams C T, Wall F, Woolley A R and Phillipo S 1997 Compositional variation in pyrochlore from the Bingo carbonatite, Zaire; J. Afr. Earth Sci. 25(1) 137–145.

    Article  Google Scholar 

  • Veena K, Pandey B K, Krishnamurthy P and Gupta J N 1998 Pb, Sr and Nd isotopic systematics of the carbonatites of Sung Valley, Meghalaya, Northeast India: Implications for contemporary plume-related mantle source characteristics; J. Petrol. 39(11–12) 1875–1884.

    Article  Google Scholar 

  • Viladkar S G, Schleicher H and Pawaskar P 1994 Mineralogy and geochemistry of the Sung Valley carbonatite complex, Shillong, Meghalaya, India; N. Jb. Miner. Mh. 11 499–499.

    Google Scholar 

  • Viladkar S G and Sorokhtina N V 2021 Evolution of pyrochlore in carbonatites of the Amba Dongar complex, India; Mineral. Mag. 85(4) 554–567.

    Article  Google Scholar 

  • Yin A, Dubey C S, Webb A A G, Kelty T K, Grove M, Gehrels G E and Burgess W P 2010 Geologic correlation of the Himalayan orogen and Indian Craton: Part I. Structural geology, U-Pb zircon geochronology, and tectonic evolution of the Shillong Plateau and its neighbouring regions in Northeast India; Geol. Soc. Am. Bull. 122 336–359.

    Article  Google Scholar 

  • Zhitova E S, Krivovichev S V, Yakovenchuk V N, Ivanyuk G Y, Pakhomovsky Y A and Mikhailova J A 2018 Crystal chemistry of natural layered double hydroxides: 4. Crystal structures and evolution of structural complexity of quintinite polytypes from the Kovdor alkaline-ultrabasic massif, Kola peninsula, Russia; Mineral. Mag. 82(2) 329–346.

    Article  Google Scholar 

Download references

Acknowledgements

A part of this work forms the M.Sc. dissertation of RG. The authors thank Biswajit Mishra and Dewashish Upadhyay for providing access to EPMA and LA-ICPMS analytical facilities, respectively. Surajit Mishra is thanked for accompanying in the field. The photomicrographs used in the figures were captured using a Leica DM2700 microscope procured through a DAE-BRNS project (Ref. No: 52/14/04/2019-BRNS/10417) funded to PH. We sincerely thank both the reviewers for their constructive comments, which improved the manuscript. Editorial suggestions by George Mathew were helpful in revising the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

RG and PH carried out the fieldwork. RG had carried out all the thermodynamic calculations and plotted the data. Both RG and PH have interpreted the data and written the manuscript.

Corresponding author

Correspondence to Pranjit Hazarika.

Additional information

Communicated by George Mathew

Supplementary material pertaining to this article is available on the Journal of Earth System Science website (http://www.ias.ac.in/Journals/Journal_of_Earth_System_Science).

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, R., Hazarika, P. Magmatic-hydrothermal evolution of the Sung Valley Carbonatite, northeastern India. J Earth Syst Sci 132, 70 (2023). https://doi.org/10.1007/s12040-023-02089-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02089-y

Keywords

Navigation