Skip to main content

Advertisement

Log in

Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mantle xenoliths from the Obnazhennaya kimberlite pipe, Yakutia, possess a large range of mineralogical and chemical compositions, from both group A and B eclogites. Major-element contents of the group A eclogites exhibit transitional features between the group B eclogites and peridotite. The Mg# of clinopyroxenes is 0.86–0.94, with 0.60–0.84 for garnets. Differences in concentration of LREEs exist between the Obnazhennaya group A and the well-studied group B eclogites from the Udachnaya kimberlite pipe. In general, garnets in the group A eclogites contain lower LREEs than those from the group B eclogites; however, the trend for clinopyroxene is reversed. High δ 18O (5.46–7.81) values, and the positive Eu anomalies in the garnets and clinopyroxenes (Eu/Eu* 1.2–1.4) demonstrate the involvement of an oceanic crustal component in the formation of the group A eclogites. The group A eclogites formed between 21.0 and 37.6 kbar, and 711 and 923 °C, in a time interval of 1,071–1,237 Ma. An innovative model is proposed to explain the formation of the group A eclogites and websterites. It involves the reaction of a depleted mantle peridotite with TTG and carbonatite melts closely related to the subduction of oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  • Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link? Contrib Mineral Petrol 143:56–70

    Google Scholar 

  • Beard BL, Fraracci KN, Taylor LA, Snyder GA, Clayton RN, Mayeda TK, Sobolev NV (1996) Petrography and geochemistry of eclogites from the Mir kimberlite, Yakutia, Russia. Contrib Mineral Petrol 125:293–310

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    CAS  Google Scholar 

  • Boyd FR, Pearson DG, Nixon PH, Mertzman SA (1993) Low-calcium garnet herzburgites from South Africa: their relations to craton structure and diamond crystallization. Contrib Mineral Petrol 113:352–366

    CAS  Google Scholar 

  • Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128:228–246

    Article  CAS  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II: new thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    CAS  Google Scholar 

  • BVTP (1981) Basaltic volcanism on the terrestrial planets (Lunar and Planetary Institute). Pergamon Press, New York

  • Cocker JD, Griffin BJ, Muehlenbachs K (1982) Oxygen and carbon isotope evidence for seawater-hydrothermal alteration of the Macquarie Island ophiolite. Earth Planet Sci Lett 61:112–122

    Article  CAS  Google Scholar 

  • Coleman RG, Lee ED, Beatty LB, Brannock WW (1965) Eclogites and eclogites: their differences and similarities. Geol Soc Am Bull 76:483–508

    CAS  Google Scholar 

  • Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165

    Article  CAS  Google Scholar 

  • Crowe DE, Valley JW, Baker KL (1990) Microanalysis of sulfur-isotope ratios and zonation by laser microprobe. Geochim Cosmochim Acta 54:2075–2092

    CAS  Google Scholar 

  • Davis GL, Sobolev NV, Khar'kiv AD (1980) New data on the age of Yakutian kimberlites obtained by uranium-lead method on zircons. Dokl Akad Nauk SSSR 254:175–179

    Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Nd isotopic variations and petrogenetic models. Geophys Res Lett 3:249–252

    CAS  Google Scholar 

  • Elsenheimer D, Valley JW (1992) In situ oxygen isotope analysis of feldspar and quartz by Nd-YAG laser microprobe. Chem Geol 101:21–42

    CAS  Google Scholar 

  • Elsenheimer D, Valley JW (1993) Submillimeter scale zonation of delta-O-18 in quartz and feldspar, Isle-of-skye, Scotland. Geochim Cosmochim Acta 57:3669–3676

    CAS  Google Scholar 

  • Finnerty AA, Boyd FR (1984) Evaluation of geothermobarometers for garnet peridotites. Geochim Cosmochim Acta 48:15–27

    CAS  Google Scholar 

  • Fung AT, Haggerty SE (1995) Petrography and mineral compositions of eclogites from the Koidu kimberlite complex, Sierra-Leone. J Geophys Res 100:20451–20473

    Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for δ18O-buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    CAS  Google Scholar 

  • Griffin WL, Kaminsky FV, Ryan CG, O'Reilly SY, Win TT, Ilupin IP (1996) Thermal state and composition of the lithospheric mantle beneath the Daldyn kimberlite field, Yakutia. Tectonophysics 262:19–33

    Article  CAS  Google Scholar 

  • Harris JW, Duncan DJ, Zhang F, Miao Q, Zhu Y (1994) The physical characteristics and syngenetic inclusion geochemistry of diamonds from Pipe 50, Liaoning Province, People's Republic of China. In: Meyer HOA, Leonardos OH (eds) Proc 5th Int Kimberlite Conf, vol 2. Diamonds: characterization, genesis and exploration. Brasilia, CPRM Spec Publ 1/B, pp 106–115

  • Hauri EH, Shimizu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227

    Google Scholar 

  • Helmstaedt H, Doig R (1975) Eclogite nodules from kimberlite pipes of the Colorado plateau—samples of Fransican-type oceanic lithosphere. Phys Chem Earth 9:95–111

    CAS  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    CAS  Google Scholar 

  • Hunter RH, Taylor LA (1982) Instability of garnet from the mantle—glass as evidence of metasomatic melting. Geology 10:617–620

    CAS  Google Scholar 

  • Ireland TR, Rudnick RL, Spetsius ZV (1994) Trace elements in diamond inclusions from eclogites reveal a link to Archean granites. Earth Planet Sci Lett 128:199–213

    CAS  Google Scholar 

  • Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Trace elements in diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Acta 58:5191–5207

    CAS  Google Scholar 

  • Jerde EA, Taylor LA, Crozaz G, Sobolev NV, Sobolev VN (1993) Diamondiferous eclogites from Yakutia, Siberia: evidence for a diversity of protoliths. Contrib Mineral Petrol 114:189–202

    CAS  Google Scholar 

  • Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678

    Google Scholar 

  • Lee D-C, Halliday AN, Hunter RH, Holden P, Upton BGJ (1993) Rb-Sr and Sm-Nd isotopic variations in dissected crustal xenoliths. Geochim Cosmochim Acta 57:219–230

    CAS  Google Scholar 

  • MacGregor ID, Manton WI (1986) Roberts Victor eclogites: ancient oceanic crust. J Geophys Res 91:14063–14079

    CAS  Google Scholar 

  • Mattey D, Lowry D, MacPherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241

    Article  CAS  Google Scholar 

  • McCulloch MT (1989) Sm-Nd systematics in eclogite and garnet peridotite nodules from kimberlites: implications for the early differentiation of the earth. In: Ross J et al. (eds) Kimberlites and related rocks, vol 2. Geological Society of Australia, Perth, pp 864–876

  • McDonough WF, Sun S (1995) The composition of the earth. Chem Geol 120:223–253

    CAS  Google Scholar 

  • Mercier JCC (1976) Single-pyroxene geothermometry and geobarometry. Am Mineral 61:603–615

    CAS  Google Scholar 

  • Mercier JCC (1980) Single-pyroxene thermobarometry. Tectonophysics 70:1–37

    Google Scholar 

  • Milashev VA, Shul'gina NI (1959) New data on the age of the kimberlites of the Siberian Platform. Dokl Akad Nauk SSSR 126:1320–1322

    CAS  Google Scholar 

  • Neal CR, Taylor LA, Davidson JP, Holden P, Halliday AN, Nixon PH, Paces JB, Clayton RN, Mayeda TK (1990) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part 2. Sr, Nd, and O isotope geochemistry. Earth Planet Sci Lett 99:362–379

    Article  CAS  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene geothermobarometer for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  CAS  Google Scholar 

  • Ouchinnikov YI (1989) Comparative characteristics of deep-seated inclusions from the Obnazhennaya kimberlite pipe (Yakutia) and alkaline basalts of Khakassia. PhD Thesis, Inst Geol Geophys, Novosibirsk

  • Pearson DG, Boyd FR, Haggerty SE, Pasteris JD, Field SW, Nixon PH, Pokhilenko NP (1994) Characterization and origin of graphite in cratonic lithospheric mantle: a petrological carbon isotope and Raman spectroscopic study. Contrib Mineral Petrol 115:449–466

    CAS  Google Scholar 

  • Pearson DG, Snyder GA, Shirey SB, Taylor LA, Carlson RW, Sobolev NV (1995) Archean Re-Os age for Siberian eclogites and constraints on Archean tectonics. Nature 374:711–713

    CAS  Google Scholar 

  • Qi Q, Taylor LA, Snyder GA, Sobolev NV (1994) Eclogites from the Obnazhennaya kimberlite pipe, Yakutia, Russia. Int Geol Rev 36:911–924

    Google Scholar 

  • Qi Q, Taylor LA, Snyder GA, Clayton RN, Mayeda TK, Sobolev NV (1997) Detailed petrology and geochemistry of a rare corundum eclogite xenolith from Obnazhennaya, Yakutia. In: Sobolev NV, Mitchell RH (eds) Proc 6th Int Kimberlite Conf, August 1995, Novosibirsk. Allerton Press, New York, pp 247–260

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32-kbar—implications for continental growth and crust-mantle recycling. J Petrol 36:891–931

    CAS  Google Scholar 

  • Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356

    CAS  Google Scholar 

  • Rosen OM, Condie KC, Natapov LM, Nozhkin AD (1994) Archean and early Proterozoic evolution of the Siberian craton: a preliminary assessment. In: Condie KC (ed) Archean crustal evolution. Elsevier, Amsterdam, pp 411–459

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    CAS  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrography and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    CAS  Google Scholar 

  • Schilling JG, Zajac M, Evans R, Johnson T, White W, Devine JD, Kingsley R (1983) Petrologic and geochemical variations along the Mid-Atlantic Ridge from 29°N to 73°N. Am J Sci 283:510–586

    CAS  Google Scholar 

  • Shervais JW, Taylor LA, Lugmair GW, Clayton RN, Mayeda TK, Korotev RL (1988) Early Proterozoic oceanic crust and the evolution of subcontinental mantle: Eclogites and related rocks from southern Africa. Geol Soc Am Bull 100:411–423

    Article  CAS  Google Scholar 

  • Shimizu N, Hart SR (1982) Applications of the ion probe to geochemistry and cosmochemistry. Annu Rev Earth Planet Sci 10:483–526

    CAS  Google Scholar 

  • Shimizu N, Semet MP, Allegre CJ (1978) Geochemical applications of quantitative ion microprobe analysis. Geochim Cosmochim Acta 42:1321–1334

    CAS  Google Scholar 

  • Smyth JR, Caporuscio FA, Mccormick TC (1989) Mantle eclogites—evidences of igneous fractionation in the mantle. Earth Planet Sci Lett 93:133–141

    Article  CAS  Google Scholar 

  • Snyder GA, Lee DC, Taylor LA, Halliday AN, Jerde EA (1994) Evolution of the upper mantle of the Earth's moon: Sm and Sr isotopic constraints from high-Ti mare basalts. Geochim Cosmochim Acta 58:4795–4808

    CAS  Google Scholar 

  • Snyder GA, Taylor LA, Jerde EA, Clayton RN, Mayeda TK, Deines P, Rossman GR, Sobolev NV (1995) Archean mantle heterogeneity and the origin of diamondiferous eclogites, Siberia: evidence from stable isotopes and hydroxyl in garnet. Am Mineral 80:799–809

    CAS  Google Scholar 

  • Snyder GA, Taylor LA, Crozaz G, Halliday AN, Beard BL, Sobolev VN, Sobolev NV (1997) The origins of Yakutian eclogite xenoliths. J Petrol 38:85–113

    CAS  Google Scholar 

  • Snyder GA, Keller RA, Taylor LA, Remley DA, Sobolev NV (1998) The origin of ultramafic (Group A) eclogites: Nd and Sr isotopic evidence from the Obnazhennaya kimberlite, Yakutia. In: Ext Abstr Vol 7th Int Kimberlite Conf, April 1998, Cape Town, pp 423–426

  • Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the upper-mantle. American Geophysical Union, Washington, DC

  • Sobolev NV, Lavrent'yev YG (1971) Isomorphic sodium admixture in garnets formed at high pressures. Contrib Mineral Petrol 31:1–12

    CAS  Google Scholar 

  • Sobolev VN, Taylor LA, Snyder GA, Sobolev NV (1994) Diamondiferous eclogites from the Udachnaya kimberlite pipe, Yakutia. Int Geol Rev 36:42–64

    Google Scholar 

  • Sobolev NV, Snyder GA, Taylor LA, Keller RA, Yefimova ES, Sobolev VN, Shimizu (1998a) Extreme chemical diversity in the mantle during eclogitic diamond formation: Evidence from 35 garnet and 5 pyroxene inclusions in a single diamond. Int Geol Rev 40:567–578

    Google Scholar 

  • Sobolev NV, Taylor LA, Zuev VM, Bezborodov SM, Snyder GA, Sobolev VN, Yefimova ES (1998b) The specific features of eclogitic paragenesis of diamonds from Mir and Udachnaya kimberlite pipes (Yakutia). Russian Geol Geophys 39:1653–1663

    Google Scholar 

  • Sobolev VN, McCammon CA, Taylor LA, Snyder GA, Sobolev NV (1999) Precise Mössbauer milliprobe determination of ferric iron in rock-forming minerals and limitations of electron microprobe. Am Mineral 84:78–85

    CAS  Google Scholar 

  • Spetsius ZV, Serenko VP (1990) Composition of continental upper mantle and lower crust under the Siberian platform. Results of Researches on the International Geophysical Projects, pp 272

  • Spetsius ZV, Taylor LA (2002) Partial melting in mantle eclogite xenoliths: clues to microdiamond genesis. Int Geol Rev 44:973–987

    Google Scholar 

  • Stachel T, Harris JW (1997a) Diamond precipitation and mantle metasomatism—evidence from the trace element chemistry of silicate inclusions in diamonds from Akwatia, Ghana. Contrib Mineral Petrol 129:143–154

    Article  CAS  Google Scholar 

  • Stachel T, Harris JW (1997b) Syngenetic inclusions in diamonds from the Birim field (Ghana)—a deep peridotitic profile with a history of depletion and re-enrichment. Contrib Mineral Petrol 127:336–352

    Article  CAS  Google Scholar 

  • Takahashi E (1986) Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotite upper mantle. J Geophys Res 91:9367–9382

    CAS  Google Scholar 

  • Takahashi E, Shimazaki T, Tsuzaki Y, Yoshido H (1993) Melting study of peridotite KLB-1 to 6.5 GPa and the origin of basaltic magmas. Philos Trans R Soc Lond A 342:105–120

    CAS  Google Scholar 

  • Tatsumi Y (1982) Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan. 2. Melting phase-relations at high-pressures. Earth Planet Sci Lett 60:305–317

    CAS  Google Scholar 

  • Tatsumi Y, Ishizaka K (1982) Origin of high-Magsesian andesites in the Setouchi volcanic belt, southwest Japan. 1. Petrographic and chemical characterics. Earth Planet Sci Lett 60:293–304

    Article  CAS  Google Scholar 

  • Taylor LA (1993) Evolution of the subcontinental mantle beneath the Kaapvaal craton: a review of evidence for crustal subduction for Bellsbank eclogites. In: VS Sobolev Memorial Volume, Geol Geofiz 34:25–47

  • Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, Part I. Mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567

    Google Scholar 

  • Taylor LA, Snyder GA, Crozaz G, Sobolev VN, Yefimova ES, Sobolev NV (1996) Eclogitic inclusions in diamonds: evidence of complex mantle processes over time. Earth Planet Sci Lett 142:535–551

    Article  CAS  Google Scholar 

  • Taylor LA, Milledge HJ, Bulanova G, Snyder GA, Keller RA (1998) Metasomatic eclogitic diamond growth: evidence from multiple diamond inclusions. Int Geol Rev 40:595–612

    Google Scholar 

  • Taylor LA, Keller RA, Snyder GA, Wang W, Carlson WD, Hauri EH, McCandless T, Kim K-R, Sobolev NV, Bezborodov SM (2000) Diamonds and their mineral inclusions and what they tell us: a detailed "pull-apart" of a diamondiferous eclogite. Int Geol Rev 42(12):959–983

    Google Scholar 

  • Ukhanov AV, Khar'kiv AD, Ryabchikov ID (1988) Lithospheric mantle of Yakutian kimberlite province (in Russian). Nauka, Moscow

  • Ustinov VI, Ukhanov AV, Grinenko VA (1981) Oxygen-isotope compositions of mantle xenoliths from the Obnazhennaya kimberlite pipe in north Yakutia. Geokhimiya 6:937–941

    Google Scholar 

  • Ustinov VI, Ukhanov AV, Grinenko VA, Gavrilov YY (1987) δ18O in eclogites from the Udachnaya and Obnazhennaya kimberlite pipes. Geokhimiya 11:1637–1641

    Google Scholar 

  • Viljoen KS, Smith CB, Sharp ZD (1996) Stable and radiogenic isotope study of eclogite xenoliths from the Orapa kimberlite, Botswana. Chem Geol 131:235–255

    Article  CAS  Google Scholar 

  • Xu XS, O'Reilly SY, Griffin WL, Zhou XM (2000) Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. J Petrol 41:111–148

    CAS  Google Scholar 

  • Yaxley GM, Green DH, Kamenetsky V (1998) Carbonatite metasomatism in the southern Australian lithosphere. J Petrol 39:1917–1930

    CAS  Google Scholar 

  • Zindler A, Jagoutz E (1988) Mantle cryptology. Geochim Cosmochim Acta 52:319–333

    CAS  Google Scholar 

  • Zonenshain LP, Kuzmin MI, Natapov LM (1990) Geology of the USSR: a plate-tectonic synthesis. American Geophysical Union, Washington, DC, Geodynamics Series vol 21

    Google Scholar 

Download references

Acknowledgments

We would like to thank Allan Patchen for his assistance with the electron microprobe analyses at the University of Tennessee, Nobu Shimizu for his assistance with the SIMS analyses, and Masa Kurosawa, University of Tsukuba for assistance with the LA-ICP-MS analyses. Vladimir Sobolev, Alfredo Camacho, and Prinya Promprated are thanked for their stimulating, provocative comments and assistance. Constructive and insightful comments from anonymous reviewers substantially helped to improve the quality of the manuscript. The handling of this manuscript by Dr. Tim Grove is greatly acknowledged. A major portion of this research was supported by NSF grants EAR 97-25885 and EAR 99-09430, for which we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence A. Taylor.

Additional information

Editorial responsibility: T. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, L.A., Snyder, G.A., Keller, R. et al. Petrogenesis of group A eclogites and websterites: evidence from the Obnazhennaya kimberlite, Yakutia. Contrib Mineral Petrol 145, 424–443 (2003). https://doi.org/10.1007/s00410-003-0465-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0465-y

Keywords

Navigation