Skip to main content
Log in

Influence of initial stress, irregularity and heterogeneity on Love-type wave propagation in double pre-stressed irregular layers lying over a pre-stressed half-space

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The present paper deals with the propagation of Love-type wave in an initially stressed irregular vertically heterogeneous layer lying over an initially stressed isotropic layer and an initially stressed isotropic half-space. Two different types of irregularities, viz., rectangular and parabolic, are considered at the interface of uppermost initially stressed heterogeneous layer and intermediate initially stressed isotropic layer. Dispersion equations are obtained in closed form for both cases of irregularities, distinctly. The effect of size and shape of irregularity, horizontal compressive initial stress, horizontal tensile initial stress, heterogeneity of the uppermost layer and width ratio of the layers on phase velocity of Love-type wave are the major highlights of the study. Comparative study has been made to identify the effects of different shapes of irregularity, presence of heterogeneity and initial stresses. Numerical computations have been carried out and depicted by means of graphs for the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  • Acharya D P and Roy I 2009 Effect of surface stress and irregularity of the interface on the propagation of SH-waves in the magneto-elastic crustal layer based on a solid semi space; Sadhana 34 (2) 309–330.

    Article  Google Scholar 

  • Acharya D P, Roy I and Sengupta S 2009 Effect of magnetic field and initial stress on the propagation of interface waves in transversely isotropic perfectly conducting media; Acta Mech. 202 (1–4) 35–45.

    Article  Google Scholar 

  • Ben-Hador R and Buchen P 1999 Love and Rayleigh waves in non-uniform media; Geophys. J. Int. 137 (2) 521– 534.

    Article  Google Scholar 

  • Bhattacharya J 1969 The possibility of the propagation of Love-type waves in an intermediate heterogeneous layer lying between two semi-infinite isotropic homogeneous elastic layers; Pure Appl. Geophys. 72 (1) 61–71.

    Article  Google Scholar 

  • Biot M A 1965 Mechanics of Incremental Deformations; Wiley, New York.

    Google Scholar 

  • Chattaraj R, Samal S K and Mahanti N C 2012 Dispersion of Love wave propagating in irregular anisotropic porous stratum under initial stress; Int. J. Geomech. 13 (4) 402–408.

    Article  Google Scholar 

  • Chattopadhyay A and De R K 1983 Love type waves in a porous layer with irregular interface; Int. J. Eng. Sci. 21 1295–1303.

    Article  Google Scholar 

  • Chattopadhyay A and Pal A K 1983 Dispersion curves of SH-waves caused by irregularity in the pre-stressed internal stratum; Acta Geophys. 31 (1) 37–49.

    Google Scholar 

  • Chattopadhyay A and Singh A K 2012 Propagation of magnetoelastic shear waves in an irregular self-reinforced layer; J. Eng. Math. 75 (1) 139–155.

    Article  Google Scholar 

  • Chattopadhyay A, Chakraborty M and Pal A K 1983 Effects of irregularity on the propagation of guided SH-waves; J. Theor. Appl. Mech. 2 (2) 215–225.

    Google Scholar 

  • Chattopadhyay A, Gupta S, Sahu S A and Singh A K 2011a Dispersion equation of magnetoelastic shear waves in irregular monoclinic layer; J. Appl. Math. Mech. 32 (5) 571–586.

    Article  Google Scholar 

  • Chattopadhyay A, Gupta S, Sahu S A and Singh A K 2011b Dispersion equation of magnetoelastic shear waves in an irregular monoclinic layer; J. Appl. Math. Mech. 32 (5) 571–586.

    Article  Google Scholar 

  • Dey S and Addy S K 1978 Love waves under initial stresses; Acta Geophys. 24 (1) 47.

    Google Scholar 

  • Dutta S 1963 Love waves in a non-homogeneous internal stratum lying between two semi-infinite isotropic media; Pure Appl. Geophys. 28 156–160.

    Google Scholar 

  • Ewing W M and Press W S F 1957 Elastic Waves in Layered Media; McGraw-Hill, New York, NY, USA.

    Google Scholar 

  • Gubbins D 1990 Seismology and Plate Tectonics; Cambridge University Press, Cambridge.

    Google Scholar 

  • Kaur T, Singh A K, Chattopadhyay A and Sharma S K 2014 Dynamic response of normal moving load on an irregular fiber-reinforced half-space; J. Vib. Control., doi: 1077546314528525.

  • Khurana P and Vashisth A K 2001 Love wave propagation in a pre-stressed medium; Indian J. Pure Appl. Math. 32 (8) 1201–1207.

    Google Scholar 

  • Sato Y 1952 Love waves propagated upon heterogeneous medium; Bull. Earthquake Res. Inst. 30 1–12.

    Google Scholar 

  • Singh S S 2011 Love wave in a layer medium bounded by irregular boundary surfaces; J. Vib. Control. 17 789–795.

    Article  Google Scholar 

  • Tranter C J 1966 Integral Transform in Mathematical Physics; Methuen and Co. Ltd., London.

    Google Scholar 

  • Willis H F 1948 A formula for expanding an integral as a series; Philos. Mag. 39 (293) 455–459.

    Article  Google Scholar 

Download references

Acknowledgements

The authors convey their sincere thanks to Indian School of Mines, Dhanbad for providing all the necessary facilities for research. The authors also gratefully acknowledge the reviewers for their comprehensive and constructive suggestions for the improvement of quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AMRITA DAS.

Appendices

Appendix I

$$\begin{array}{rcl} &&A_{0} =-B_{0} \frac{({2T+\upsilon \tan TH_{2}} )}{({2T\tan TH_{2} -\upsilon} )},\\ &&A_{1} =-B_{1} \frac{({2T+\upsilon \tan TH_{2}} )}{({2T\tan TH_{2} -\upsilon} )},\\ &&B_{0} =\frac{2p_{2} \mu_{2} \mu_{3} e^{-p_{3} d}({2T\tan TH_{2} -\upsilon} )}{U(k)}, \end{array} $$
$$\begin{array}{rcl} &&B_{1} =\frac{R_{1} {\mu_{1}^{0}} ({-\upsilon \cos TH_{1} +2T\sin TH_{1}} )e^{-\frac{\upsilon} {2}H_{1}} +2R_{2} \cos TH_{1} e^{\frac{\upsilon} {2}H_{1}} }{-2{\mu_{1}^{0}} T}, \end{array} $$
$$\begin{array}{rcl} &&C_{0}=\frac{({2T\cos TH_{1} +\upsilon \tan TH_{2} \cos TH_{1} +2T\tan TH_{2} \sin TH_{1} -\upsilon \sin TH_{1}} )}{({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}} )U(k)} \\ &&{\kern.4pc}\times ({-2{p_{2}^{2}}\mu_{2}^{2}\mu_{3} e^{-p_{3} d}e^{\frac{\upsilon} {2}H_{1}}} )+\frac{4\mu_{3} \sin p_{2} H_{1} e^{-p_{3} d}}{({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}} )}, \\ \end{array} $$
$$\begin{array}{rcl} &&D_{0}=\frac{({2T\cos TH_{1} +\upsilon \tan TH_{2} \cos TH_{1} +2T\tan TH_{2} \sin TH_{1} -\upsilon \sin TH_{1}} )}{({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}} )U(k)} \\ &&{\kern.4pc}\times 2\mu_{2} p_{2} {\mu_{3}^{2}} e^{-p_{3} d}e^{\frac{\upsilon} {2}H_{1}} +\frac{4\mu_{3} \cos p_{2} H_{1} e^{-p_{3} d}}{({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}} )}, \\ \end{array} $$
$$\begin{array}{rcl} &&E=\frac{({2T\cos TH_{1} +\upsilon \tan TH_{2} \cos TH_{1} +2T\tan TH_{2} \sin TH_{1} -\upsilon \sin TH_{1}} )}{({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}} )U(k)} \\ &&{\kern.2pc}\times \left( {-2{\mu_{2}^{2}}{p_{2}^{2}}\mu_{3} e^{-p_{3} d}e^{\frac{\upsilon} {2}H_{1}} } \right)\!-\frac{2({\mu_{2} p_{2} \cos p_{2} H_{1} -\mu_{3} p_{3} \sin p_{2} H_{1}} )e^{-p_{3} d}}{({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}} )p_{3}} . \end{array} $$
$$\begin{array}{rcl} &&Q_{1} =\frac{e^{\frac{\upsilon} {2}H_{1}} }{2}\left( 2\mu_{2} p_{2} T\cos TH_{1} ({p_{2} \mu_{2} \sin TH_{1} -\mu_{3} p_{3} \cos p_{2} H_{1}} )\right.\\ &&{\kern-.2pc}\left.-\upsilon \mu_{2} p_{2} \sin TH_{1} \left( {p_{2} \mu_{2} \sin p_{2} H_{1}} -\mu_{3} p_{3} \cos p_{2} H_{1} \right) \right)\\ &&{\kern-.2pc}-\left( \left( {T^{2}+\,\frac{\upsilon^{2}}{4}}\right)\sin TH_{1}({\mu_{2} p_{2} \cos p_{2} H_{1} +\sin p_{2} H_{1} \mu_{3} p_{3}} ) \right)e^{-\frac{\upsilon} {2}H_{1}} {\mu_{1}^{0}} \end{array} $$
$$\begin{array}{rcl} Q_{2}\!\!\!&=&\!\!\!e^{\frac{\upsilon} {2}H_{1}} \left( \mu_{2} p_{2} ({\mu_{2} p_{2} \sin p_{2} H_{1} -\mu_{3} p_{3} \cos p_{2} H_{1}} ) \left( {\frac{\upsilon} {2}\cos TH_{1} +T\sin TH_{1}} \right) \right)\\ &&{\kern-.6pc}+ \left( \vphantom{\frac{\upsilon^{2}}{4}} \!\!\cos TH_{1} ({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}} ) \left( \frac{\upsilon^{2}}{4}+T^{2}\cos TH_{1}\right)\right)e^{-\frac{\upsilon} {2}H_{1}} {\mu_{1}^{0}} \end{array} $$
$$\begin{array}{rcl} &&S_{1} =4Q_{2} {\mu_{1}^{0}} \mu_{3} \mu_{2} p_{2} T^{2}(\mu_{2} p_{2} \cos p_{2} h_{1} +\mu_{3} p_{3} \sin p_{2} h_{1} )-Q_{2} (Q_{4} +Q_{6} +Q_{8} ){H}^{\prime},\\ &&S_{2} =2{\mu_{1}^{0}} \mu_{3} p_{2} \mu_{2} T({\mu_{2} p_{2} \cos p_{2} H_{1}\! +\!\mu_{3} p_{3} \sin p_{2} H_{1}} )({2TQ_{1}\! -\!Q_{2} \upsilon} )\,-\,Q_{1} (Q_{4}\! +\!Q_{6}\! +\!Q_{8} ){H}^{\prime} \!\,-\,Q_{2} (Q_{3}\! +\!Q_{5}\! +\!Q_{7} ){H}^{\prime}\!,\\ &&S_{3} =2Q_{1} \upsilon {\mu_{1}^{0}} \mu_{3} \mu_{2} p_{2} T(\mu_{2} p_{2} \cos p_{2} H_{1} \,+\,\mu_{3} p_{3} \sin p_{2} H_{1} ) -Q_{1} (Q_{3} +Q_{5} +Q_{7} ){H}^{\prime}. \end{array} $$
$$\begin{array}{rcl} &&F_{1}=4Q_{2} {\mu_{1}^{0}} \mu_{3} \mu_{2} p_{2} T^{2}({\mu_{2} p_{2} \cos p_{2} h_{1} +\mu_{3} p_{3} \sin p_{2} h_{1}} ) -Q_{2} (Q_{4} +Q_{6} +Q_{8} ){H}^{\prime\prime},\\ &&F_{2}=2{\mu_{1}^{0}} \mu_{3} p_{2} \mu_{2} T({2Q_{1} T\!\,-\,\upsilon Q_{2}} )\!\left( p_{2} \mu_{2} \!\cos p_{2} H_{1}\right. \left.\!\!+\mu_{3} p_{3} \sin p_{2} H_{1}\right)\,-\,Q_{1}\! (Q_{4}\! +\!Q_{6}\! +\!Q_{8} ){H}^{\prime\prime}\!\! -\!Q_{2} (Q_{3} \,+\,Q_{5} \,+\,Q_{7} ){H}^{\prime\prime}, \\ &&F_{3} \,=\,2Q_{1} \upsilon {\mu_{1}^{0}} \mu_{3} \mu_{2} p_{2} T({\mu_{2} p_{2} \cos p_{2} H_{1} \,+\,\mu_{3} p_{3} \sin p_{2} H_{1}} ) -Q_{1} (Q_{3} +Q_{5} +Q_{7} ){H}^{\prime\prime}. \end{array} $$

Appendix II

$$\begin{array}{rcl} &&Q_{3}\!\,=\!\,4\mu_{2} p_{2} T^{2}\mu_{3} {\mu_{1}^{0}} ({T({\mu_{2} p_{2} \cos p_{2} H_{1}\!+\mu_{3} p_{3} \sin p_{2} H_{1}} )} \\ &&{\kern6pt}-\upsilon \cos TH_{1} \sin TH_{1} \left( {\mu_{2} p_{2} \cos p_{2} H_{1}}\right.\\ &&{\kern5pt}\left.\left.{{-\mu_{3} p_{3}}\sin p_{2} H_{1}}\right)\right),\\ &&Q_{4} =\upsilon \mu_{2} p_{2} \mu_{3} {\mu_{1}^{0}} \left\{ ({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}} )\right.\\ &&{\kern5pt}\times({2T^{2}+\cos^{2}TH_{1} ({\upsilon^{2}+4T^{2}} )} ) +2\upsilon T\cos TH_{1}\\ &&{\kern5pt}\times\left.\sin TH_{1} ({\mu_{3} p_{3} \sin p_{2} H_{1} -\mu_{2} p_{2} \cos p_{2} H_{1}} ) \right\} ,\\ &&Q_{5}=2e^{-\frac{\upsilon} {2}H_{1}} {\mu_{1}^{0}} \mu_{3} p_{2} ({-\upsilon \cos TH_{1} +2T\sin TH_{1}} )Q_{1}\\ &&{\kern4pt}+\!{\mu_{1}^{0}} \!\left( {\kern-.8pt}{2{\kern-.4pt}\upsilon{\kern-.4pt}\mu_{2} {p_{2}^{2}}T\mu_{3}} ({\kern-.4pt}{\mu_{2} p_{2} \sin p_{2} H_{1}\!{\kern-.2pt}+{\kern-.2pt}\!\mu_{3} p_{3} \cos p_{2} H_{1}}{\kern-.8pt}) \right.\\ &&{\kern4pt}-\mu_{2} p_{2}^{\text{2}}\mu_{3} \cos TH_{1} \sin TH_{1} \left( \mu_{2} p_{2} \sin p_{2} H_{1}\right. \\ &&{\kern2pt}\left.\left.-\mu_{3} p_{3} \cos p_{2} H_{1} \right)({4T^{2}-\upsilon^{\text{2}}} )\right), \\ &&Q_{6} =\mu_{2} {p_{2}^{2}}\mu_{3} ({\mu_{2} p_{2} \sin p_{2} H_{1} -\mu_{3} p_{3} \cos p_{2} H_{1}})\\ &&{\kern4pt}\times({\upsilon^{2}\cos^{2}TH_{1} -4T^{2}\sin^{2}TH_{1}} )\,\\ && {\kern4pt}-2\upsilon \mu_{2} {p_{2}^{2}}T{\mu_{3}^{2}} p_{3} \cos p_{2} H_{1} \cos TH_{1} \sin TH_{1} \\ &&{\kern4pt}-2Q_{2} \mu_{3} p_{2}({\upsilon \cos TH_{1} +2T\sin TH_{1}} ),\\ &&Q_{7} =-4e^{\upsilon H_{1}} {\mu_{2}^{2}}{p_{2}^{3}}T\mu_{3} \cos^{2}TH_{1}\\ &&{\kern4pt}\times ({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}}), \\ &&Q_{8} =-2e^{\upsilon H_{1}} \mu_{2} {p_{2}^{3}}\mu_{3} \cos TH_{1} \\ &&{\kern4pt}\times({\mu_{2} p_{2} \cos p_{2} H_{1} +\mu_{3} p_{3} \sin p_{2} H_{1}})\\ &&{\kern4pt}\times({\upsilon \mu_{2} \cos TH_{1} +2\sin TH_{1}} )\\ &&S_{4} =4L_{2} {\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2} t^{2} ({1+\tan^{2}tkH_{1}} )\\ &&{\kern4pt}\times\!({\kern-.4pt}{\mu_{{\kern-.4pt}2} P_{{\kern-.4pt}2} \,+\,\mu_{3} P_{{\kern-.4pt}3} \tan P_{{\kern-.4pt}2} k{\kern-.4pt}H_{{\kern-.4pt}1}} {\kern-.4pt})\!{\kern-.4pt}-{\kern-.4pt}\!L_{{\kern-.4pt}2} ({\kern-.4pt}{L_{{\kern-.4pt}4} \!{\kern-.4pt}+{\kern-.4pt}\!L_{{\kern-.4pt}6} \!{\kern-.4pt}+{\kern-.4pt}\!L_{{\kern-.4pt}8}}{\kern-.4pt}){H}^{\prime}{\kern-.4pt},\\ &&S_{5} =2{\mu_{1}^{0}} \mu_{3} P_{2} \mu_{2} t({1+\tan^{2}tkH_{1}} )\\ &&{\kern4pt}\times ({P_{2} \mu_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} )\\ &&{\kern4pt}\times\left( {2L_{1} t-L_{2} \frac{\upsilon} {k}}\right)-L_{1} (L_{4} +L_{6} +L_{8} ){H}^{\prime},\\ &&S_{6} =2L_{1} \frac{\upsilon} {k}{\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2} t({1+\tan^{2}tkH_{1}} )\\ &&{\kern2pt}\times({\mu_{2} P_{2} +\mu_{3} P_{3}\tan P_{2} kH_{1}} )\\&&{\kern4pt}-L_{1} (L_{3} +L_{5} +L_{7} ){H}^{\prime},\\ &&F_{4} =4L_{2} {\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2} t^{2}({1+\tan^{2}tkH_{1}} )\\ &&{\kern4pt}\times({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} )\\&&{\kern4pt}-L_{2} ({L_{4} +L_{6} +L_{8}} ){H}^{\prime\prime},\\ &&F_{5} =2{\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2} t({1+\tan^{2}tkH_{1}} )\\ &&{\kern4pt}\times({\mu_{2} P_{2} +P_{3} \mu_{3} \tan P_{2} kH_{1}} )\left( {2L_{1} t-L_{2} \frac{\upsilon} {k}}\right)\\ &&{\kern4pt}-L_{1} (L_{4} +L_{6} +L_{8} ){H}^{\prime\prime},\\ &&F_{6} =2L_{1} \frac{\upsilon} {k}{\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2} t({1+\tan^{2}tkH_{1}})\\ &&{\kern4pt}\times({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} )\\ &&{\kern4pt}-L_{1} (L_{3} +L_{5} +L_{7} ){H}^{\prime\prime}, \end{array} $$
$$\begin{array}{rcl} &&L_{1} =e^{\frac{\upsilon} {2}H_{1}} \mu_{2} P_{2} ({P_{2} \mu_{2} \tan P_{2} kH_{1} +\mu_{3} P_{3}} )\\ &&{\kern4pt}\times\left( {t-\frac{\upsilon} {2k}\tan tkH_{1}}\right )-e^{-\frac{\upsilon} {2}H_{1}} {\mu_{1}^{0}} \tan tkH_{1}\\ && {\kern4pt}\times({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} )\left( {t^{2}+\frac{\upsilon^{2}}{4k^{2}}} \right),\\ &&L_{2} =e^{\frac{\upsilon} {2}H_{1}} \mu_{2} P_{2} ({\mu_{2} P_{2} \tan P_{2} kH_{1} -\mu_{3} P_{3}} )\\ &&{\kern4pt}\times\left( {\frac{\upsilon} {2k}+t\tan tkH_{1}}\right)+e^{-\frac{\upsilon} {2}H_{1}} {\mu_{1}^{0}}\\ &&{\kern4pt}\times ({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} )\left( {\frac{\upsilon^{2}}{4k^{2}}+t^{2}} \right)\\ &&{\kern-2.2pc}L_{3} =4\mu_{2} P_{2} t^{3}\mu_{3} {\mu_{1}^{0}} ({1+\tan^{2}tkH_{1}} )\\[-1pt] &&\times({\mu_{2} P_{2}{\kern-1.5pt}+{\kern-1.5pt}\mu_{3} P_{3} \tan P_{2} kH_{1}}){\kern-1.5pt}-{\kern-1.5pt}4\frac{\upsilon} {k}\mu_{2} P_{2} t^{2}\mu_{3} {\mu_{1}^{0}} \\ &&\times\tan tkH_{1} ({\mu_{2} P_{2} -\mu_{3} P_{3} \tan P_{2} kH_{1}} ),\\ L_{4}\!\!\!\! &=&\!\!\!\!\frac{\upsilon} {k}\mu_{2} P_{2} \mu_{3} {\mu_{1}^{0}} ({\mu_{3} P_{3} \tan P_{2} kH_{1} +\mu_{2} P_{2}} )\\&&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\times\left( {2t^{2}({1+\tan^{2}tkH_{1}} )+\frac{\upsilon^{2}}{k^{2}}+4t^{2}} \right)\\ &&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!+2\frac{\upsilon^{2}}{k^{2}}\mu_{2} P_{2} t\mu_{3} {\mu_{1}^{0}} \tan tkH_{1}\!({\mu_{3} P_{3} \tan P_{2} kH_{1} -\,\!\mu_{2} P_{2}} ),\\ L_{5} \!\!\!\!&=&\!\!\!\!2e^{-\frac{\upsilon} {2}H_{1}} {\mu_{1}^{0}} \mu_{3} P_{2} \left( {-\frac{\upsilon} {k}+2t\tan tkH_{1}} \right)L_{1}+{\mu_{1}^{0}}\\ &&\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\times\!\! \left( \vphantom{\left( {\frac{\upsilon^{2}}{k^{2}}+4t^{2}} \right)}{2\frac{\upsilon} {k}\mu_{2} {P_{2}^{2}}t\mu_{3} \tan^{2}tkH_{1} ({\mu_{3} P_{3} \,+\,\mu_{2} P_{2} \tan P_{2} kH_{1}} )}\right. \\ && \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!+\mu_{2} {P_{2}^{2}}\mu_{3} \left( 2\frac{\upsilon} {k}t-\tan tkH_{1} \left( {\frac{\upsilon^{2}}{k^{2}}+4t^{2}} \right) \right)\\ &&\times\left.\!\!({\mu_{2} P_{2} \tan P_{2} kH_{1} -\mu_{3} P_{3}} ) \vphantom{\left( {\frac{\upsilon^{2}}{k^{2}}+4t^{2}} \right)}\right), \\ L_{6} \!\!\!\!&=&\!\!\!\!\left( {\frac{\upsilon^{2}}{k^{2}}\mu_{2} {P_{2}^{2}}\mu_{3} -4\mu_{2} {P_{2}^{2}}t^{2}\mu_{3} \tan^{2}tkH_{1}} \right)\\ &&\!\!\!\!\times({\mu_{2} P_{2} \tan P_{2} kH_{1} -\mu_{3} P_{3}} ) \\ &&\!\!\!\!-2\mu_{3} P_{2} \left( {\frac{\upsilon} {k}\mu_{2} P_{2} t\mu_{3} P_{3} \tan tkH_{1} }\right.\\&&\left.\!\!\!\!+ \right.\left. {L_{2} \left( {\frac{\upsilon} {k}-4t\tan tkH_{1}}\right)} \right), \\ L_{7}\!\!\!\! &=&\!\!\!\!-4e^{\upsilon H_{1}} {\mu_{2}^{2}}{P_{2}^{3}}t\mu_{3} ({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} ), \\ L_{8} \!\!\!\!&=&\!\!\!\!-2e^{\upsilon H_{1}} \mu_{2} {P_{2}^{3}}\mu_{3} ({\mu_{2} P_{2} +P_{3} \mu_{3} \tan P_{2} kH_{1}} )\\ &&\!\!\!\!\times\left( {\frac{\upsilon} {k}\mu_{2} +2\tan tkH_{1}}\right), \\ S_{4}^{(1)} \!\!\!\!&=&\!\!\!\!4L_{2}^{(1)} {\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2} ({t^{(1)}} )^{2}({1+\tan^{2}t^{(1)}kH_{1}} )\\ &&\!\!\!\!\times({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} )\\&&\!\!\!\!-L_{2}^{(1)} ({L_{6}^{(1)} +L_{8}^{(1)}} ){H}^{\prime},\\ S_{5}^{(1)} \!\!\!\!&=&\!\!\!\!4{L}^{\prime}_{1} {\mu_{1}^{0}} \mu_{3} P_{2} \mu_{2} ({t^{(1)}} )^{2}({1+\tan^{2}t^{(1)}kH_{1}} )\\ &&\!\!\!\!\times({P_{2} \mu_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1} } )\\&&\!\!\!\!-L_{1}^{(1)} ({L_{6}^{(1)} +L_{8}^{(1)}} ){H}^{\prime},\\ S_{6}^{(1)} \!\!\!\!&=&\!\!\!\!-L_{1}^{(1)} (L_{3}^{(1)} +L_{5}^{(1)} +L_{7}^{(1)} ){H}^{\prime},\\ \end{array} $$
$$\begin{array}{rcl} F_{4}^{(1)} \!\!\!\!&=&\!\!\!\!4{\mu_{1}^{0}} \mu_{3} L_{2}^{(1)} \mu_{2} P_{2} ({t^{(1)}} )^{2}({1+\tan^{2}t^{(1)}kH_{1}} )\\ &&\!\!\!\!\times({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} )\\&&\!\!\!\!-L_{2}^{(1)} ({L_{6}^{(1)} +L_{8}^{(1)}} ){H}^{\prime\prime},\\ F_{5}^{(1)}\!\!\!\! &=&\!\!\!\!4{\mu_{1}^{0}} \mu_{3} L_{1}^{(1)} P_{2} \mu_{2} ({t^{(1)}} )^{2}({1+\tan^{2}t^{(1)}kH_{1}} )\\ &&\!\!\!\!\times({P_{2} \mu_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} )\\&&\!\!\!\!-L_{1}^{(1)} ({L_{6}^{(1)} +L_{8}^{(1)}} ){H}^{\prime\prime},\\ F_{6}^{(1)} \!\!\!\!&=&\!\!\!\!-L_{1}^{(1)} (L_{3}^{(1)} +L_{5}^{(1)} +L_{7}^{(1)} ){H}^{\prime\prime},\\ L_{1}^{(1)}\!\!\!\! &=&\!\!\!\!\mu_{2} P_{2} t^{(1)}({P_{2} \mu_{2} \tan P_{2} kH_{1} +\mu_{3} P_{3}} )-{\mu_{1}^{0}} ({t^{(1)}} )^{2}\\ &&\!\!\!\!\times \tan t^{(1)}kH_{1} ({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} ), \\ L_{2}^{(1)}\!\!\!\! &=&\!\!\!\!\mu_{2} P_{2} t^{(1)}\tan t^{(1)}kH_{1} ({\mu_{2} P_{2} \tan P_{2} kH_{1} -\mu_{3} P_{3}})\\ &&\!\!\!\!+{\mu_{1}^{0}} ({t^{(1)}} )^{2}({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} ) \\ L_{3}^{(1)} \!\!\!\!&=&\!\!\!\!4\mu_{2} P_{2} \mu_{3} {\mu_{1}^{0}} ({t^{(1)}} )^{3}({1+\tan^{2}t^{(1)}kH_{1}})\\ &&\!\!\!\!\times({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} ),\\ L_{5}^{(1)} \!\!\!\!&=&\!\!\!\!4{\mu_{1}^{0}} \mu_{3} P_{2} t^{(1)}\tan t^{(1)}kH_{1}\\ &&\times ({L_{1} \,-\,\mu_{2} P_{2} t^{(1)}({\mu_{2} P_{2} \tan P_{2} kH_{1} \,-\,\mu_{3} P_{3}} )} ),\\ L_{6}^{(1)} \!\!\!\!&=&\!\!\!\!4\mu_{3} P_{2} t^{(1)}\tan t^{(1)}kH_{1} \,(L_{2}^{(1)} -\mu_{2} P_{2} t^{(1)}\\ &&\!\!\!\!\times\tan t^{(1)}kH_{1} ({\mu_{2} P_{2} \tan P_{2} kH_{1} -\mu_{3} P_{3}} ) ),\\ L_{7}^{(1)} \!\!\!\!&=&\!\!\!\!-4{\mu_{2}^{2}}{P_{2}^{3}}t^{(1)}\mu_{3} ({\mu_{2} P_{2} +\mu_{3} P_{3} \tan P_{2} kH_{1}} ),\\ L_{8}^{(1)} \!\!\!\!&=&\!\!\!\!-4\mu_{2} {P_{2}^{3}}\mu_{3} \tan t^{(1)}kH_{1} \\&&\!\!\!\!\times(\mu_{2} P_{2}+P_{3} \mu_{3} \tan P_{2} kH_{1} ),\\ S_{4}^{(2)} \!\!\!\!&=&\!\!\!\!4L_{2}^{(2)} {\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2}^{(1)} ({t^{(1)}} )^{2}({1+\tan^{2}tkH_{1}} )\\ &&\!\!\!\!\times\left( {\mu_{2} P_{2}^{(1)} +\mu_{3} P_{3}^{(1)} \tan P_{2}^{(1)} kH_{1}} \right)\\ &&\!\!\!\!-L_{2}^{(2)} \left( {L_{6}^{(2)} +L_{8}^{(2)}} \right){H}^{\prime},\\ S_{5}^{(2)}\!\!\!\!&=&\!\!\!\!4L_{1}^{(2)} {\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2}^{(1)} ({t^{(1)}} )^{2}({1+\tan^{2}t^{(1)}kH_{1}} )\\ &&\!\!\!\!\times({P_{2}^{(1)} \mu_{2} +\mu_{3} P_{3}^{(1)} \tan P_{2}^{(1)} kH_{1}})\\ &&\!\!\!\!-L_{1}^{(2)}(L_{6}^{(2)} +L_{8}^{(2)} ){H}^{\prime}, \\ S_{6}^{(2)}\!\!\!\! &=&\!\!\!\!-L_{1}^{(2)}(L_{3}^{(2)}+L_{5}^{(2)} +L_{7}^{(2)} ){H}^{\prime},\\ F_{4}^{(2)}\!\!\!\! &=&\!\!\!\!4L_{2}^{(2)} {\mu_{1}^{0}} \mu_{3} \mu_{2} P_{2}^{(1)}({t^{(1)}} )^{2}({1+\tan^{2}t^{(1)}kH_{1}} )\\ &&\!\!\!\!\times\left( \mu_{2} P_{2}^{(1)} +\mu_{3}P_{3}^{(1)}\tan P_{2}^{(1)} kH_{1} \right)\\ &&\!\!\!\!-L_{2}^{(2)} ({L_{6}^{(2)} +L_{8}^{(2)}} ){H}^{\prime\prime},\\ F_{5}^{(2)}\!\!\!\! &=&\!\!\!\!4L_{1}^{(2)} {\mu_{1}^{0}} \mu_{3} P_{2}^{(1)} \mu_{2} ({t^{(1)}})^{2}({1+\tan^{2}t^{(1)}kH_{1}} )\\ &&\!\!\!\!\times({P_{2}^{(1)} \mu_{2} +\mu_{3} P_{3}^{(1)} \tan P_{2}^{(1)} kH_{1}} )\\ &&\!\!\!\!-L_{1}^{(2)} ({L_{6}^{(2)} +L_{8}^{(2)}} ){H}^{\prime\prime},\\ F_{6}^{(2)} \!\!\!\!&=&\!\!\!\!-L_{1}^{(2)} (L_{3}^{(2)} +L_{5}^{(2)} +L_{7}^{(2)} ){H}^{\prime\prime},\\ L_{1}^{(2)}\!\!\!\! &=&\!\!\!\!\mu_{2} P_{2}^{(1 )}t^{(1)} \left( {\mu_{2} P_{2}^{(1 )}\tan P_{2}^{(1 )}kH_{1} -\mu_{3} P_{3}^{(1 )} } \right)\\ &&\!\!\!\!-{\mu_{1}^{0}} ({t^{(1)}} )^{2}\tan t^{(1)}kH_{1} \\ &&\times\left( \mu_{2} P_{2}^{(1 )}-\mu_{3} P_{3}^{(1 )}\tan P_{2}^{(1 )}kH_{1}\right), \end{array} $$
$$\begin{array}{rcl} L_{2}^{(2)} \!\!\!\!&=&\!\!\!\!\mu_{2} P_{2}^{(1 )}t^{(1)} \tan t^{(1)}kH_{1} \left( \mu_{2} P_{2}^{(1 )}\tan P_{2}^{(1 )}kH_{1}\right.\\ &&\!\!\!\!\left. -\mu_{3} P_{3}^{(1 )} \right)+\mu_{1}^{0}({t^{(1)}} )^{2}(\mu_{2} P_{2}^{(1 )}\\&&\!\!\!\!+\mu_{3} P_{3}{(1 )\tan P_{2}^{(1 )}kH_{1}} )\\ L_{3}^{(2)} \!\!\!\!&=&\!\!\!\!4\mu_{2} P_{2}^{(1 )}({t^{(1)}} )^{3}\mu_{3} {\mu_{1}^{0}} ({1+\tan^{2}t^{(1)}kH_{1}} )\\ &&\!\!\!\!\times({\mu_{2} P_{2}^{(1 )}+\mu_{3} P_{3}^{(1 )}\tan P_{2}^{(1 )}kH_{1}} ),\\ L_{5}^{(2)}\!\!\!\! &=&\!\!\!\!4{\mu_{1}^{0}} \mu_{3} P_{2}^{(1 )}t^{(1)}\tan t^{(1)}kH_{1} \left( L_{1} -P_{2}^{(1 )}\mu_{2} t^{(1)}\right.\\ &&\!\!\!\!\left.\times\left( {\mu_{2} P_{2}^{(1 )}\tan P_{2}^{(1 )}kH_{1} -\mu_{3} P_{3}^{(1)}} \right) \right),\\ L_{6}^{(2)}\!\!\!\! &=&\!\!\!4\mu_{3} P_{2}^{(1 )}t^{(1)}\tan t^{(1)}kH_{1} \left( L_{2}^{(2)} -\mu_{2} P_{2}^{(1 )}t^{(1)}\right.\\ &&\!\!\!\!\left.\times\tan t^{(1)}kH_{1}\left( {\mu_{2} P_{2}^{(1 )}\tan P_{2}^{(1 )}kH_{1}\,-\,\mu_{3} P_{3}^{(1 )}} \right)\right)\ \\ L_{7}^{(2)} \!\!\!\!&=&\!\!\!\!-4{\mu_{2}^{2}}\mu_{3} ({P_{2}^{(1 )}} )^{3}t^{(1)}\\ &&\times\left.\left( \mu_{2} P_{2}^{(1 )}\right.+\mu_{3} P_{3}^{(1 )}\tan P_{2}^{(1 )}kH_{1} \right)\ \end{array} $$
$$\begin{array}{rcl} && L_{8}^{(2)} =-4\mu_{2} ({P_{2}^{(1 )}} )^{3}\mu_{3} \tan t^{(1)}kH_{1} \\ &&\!\!\!\!~\times({\mu_{2} P_{2}^{(1 )}+P_{3}^{(1 )}\mu_{3} \tan P_{2}^{(1 )}kH_{1}} ),\\ t^{(2)}\!\!\!\!&=&\!\!\!\!\sqrt {\frac{c^{2}}{{\beta_{2}^{2}}} -1+\xi} ,\quad t^{(1)}=\sqrt {\frac{c^{2}}{{\beta_{2}^{2}}} -1} ,\\ P_{2}^{(1)}\!\!\!\! &=&\!\!\!\!\sqrt {\frac{c^{2}}{{\beta_{2}^{2}}} -1} , \quad P_{3}^{(1)} =\sqrt {1-\frac{c^{2}}{{\beta_{3}^{2}}} } . \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SINGH, A.K., DAS, A., PARWEEN, Z. et al. Influence of initial stress, irregularity and heterogeneity on Love-type wave propagation in double pre-stressed irregular layers lying over a pre-stressed half-space. J Earth Syst Sci 124, 1457–1474 (2015). https://doi.org/10.1007/s12040-015-0620-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-015-0620-7

Keywords

Navigation