Skip to main content
Log in

Impact of inhomogeneity on SH-type wave propagation in an initially stressed composite structure

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The present analysis has been made on the influence of distinct form of inhomogeneity in a composite structure comprised of double superficial layers lying over a half-space, on the phase velocity of SH-type wave propagating through it. Propagation of SH-type wave in the said structure has been examined in four distinct cases of inhomogeneity viz. when inhomogeneity in double superficial layer is due to exponential variation in density only (Case I); when inhomogeneity in double superficial layers is due to exponential variation in rigidity only (Case II); when inhomogeneity in double superficial layer is due to exponential variation in rigidity, density and initial stress (Case III) and when inhomogeneity in double superficial layer is due to linear variation in rigidity, density and initial stress (Case IV). Closed-form expression of dispersion relation has been accomplished for all four aforementioned cases through extensive application of Debye asymptotic analysis. Deduced dispersion relations for all the cases are found in well-agreement to the classical Love-wave equation. Numerical computation has been carried out to graphically demonstrate the effect of inhomogeneity parameters, initial stress parameters as well as width ratio associated with double superficial layers in the composite structure for each of the four aforesaid cases on dispersion curve. Meticulous examination of distinct cases of inhomogeneity and initial stress in context of considered problem has been carried out with detailed analysis in a comparative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achenbach JD (1973) Wave propagation in elastic solids. North Holland Publishing Co., NewYork

    Google Scholar 

  • Bath MA (1968) Mathematical aspects of seismology. Elsevier Publishing Co., New York

    Google Scholar 

  • Bhattacharya J (1962) On the dispersion curve for Love wave due to irregularity in the thickness of the transversely isotropic crustal layer. Gerlands Beitr Geophys 6:324–334

    Google Scholar 

  • Bhattacharya J (1969) The possibility of the propagation of Love type waves in an intermediate heterogeneous layer lying between two semi-infinite isotropic homogeneous elastic layers. Pure Appl Geophys 72(1):61–71

    Article  Google Scholar 

  • Biot MA (1940) The influence of initial stress on elastic waves. J Appl Phys 11(8):522–530

    Article  Google Scholar 

  • Biot MA (1963) Surface instability in finite anisotropic elasticity under initial stress. Proceed R Soc Lond A Math Phys Eng Sci 273:329–339

    Article  Google Scholar 

  • Biot MA (1965) Mechanics of incremental deformations. John Wiley and Sons Inc., New York

    Google Scholar 

  • Bullen KE (1940) The problem of the Earth’s density variation. Bull Seismol Soc Am 30:235–250

    Google Scholar 

  • Bullen KE (1963) An introduction to the theory of seismology. Cambridge University Press, Cambridge

    Google Scholar 

  • Carcione JM (1992) Modeling anelastic singular surface waves in the Earth. Geophysics 57:781–792

    Article  Google Scholar 

  • Chatterjee M, Dhua S, Chattopadhyay A, Sahu SA (2016) Seismic waves in heterogeneous crustmantle layers under initial stresses. J Earthquake Eng 20(1):39–61

    Article  Google Scholar 

  • Chattopadhyay A (1975) On the propagation of Love types waves in an intermediate non-homogeneous layer lying between two semi-infinite homogeneous elastic media. Gerlands Beitr Geophys 84(3–4):327–334

    Google Scholar 

  • Chattopadhyay A, Gupta S, Sharma VK, Kumari P (2010) Propagation of Shear waves in viscoelastic medium at irregular boundaries. Acta Geophys 58(2):195–214

    Article  Google Scholar 

  • Dey S, Addy SK (1978) Love waves under initial stresses. Acta Geophys Polonica 26(1):7

    Google Scholar 

  • Ewing WM, Jardetzky WS, Press F, Beiser A (1957) Elastic waves in layered media. Phys Today 10:27

    Article  Google Scholar 

  • Gibson RE (1967) Some results concerning displacements and stresses in a non-homogeneous elastic half-space. Geotechnique 17(1):58–67

    Article  Google Scholar 

  • Gubbins D (1990) Seismology and Plate Tectonics. Cambridge University Press, Cambridge

    Google Scholar 

  • Kar BK (1977) On the propagation of Love type waves in a non-homogeneous internal stratum of finite thickness lying between two semi-infinite isotropic elastic media Gerlands Beitr. Geophys Leipz 86(5):407–412

    Google Scholar 

  • Kumari N, Anand Sahu S, Chattopadhyay A, Kumar Singh A (2015) Influence of heterogeneity on the propagation behavior of love-type waves in a layered isotropic structure. Int J Geomech 16(2):04015062

    Article  Google Scholar 

  • Kumari P, Kumar Sharma V, Modi C (2016) Modeling of magnetoelastic shear waves due to point source in a viscoelastic crustal layer over an inhomogeneous viscoelastic half space. Waves Random Compl Media 26(2):101–120

    Article  Google Scholar 

  • Kumari N, Chattopadhyay A, Kumar Singh A, Anand Sahu S (2017) Magnetoelastic shear wave propagation in pre-stressed anisotropic media under gravity. Acta Geophys. https://doi.org/10.1007/s11600-017-0016-y

    Google Scholar 

  • Mal AK (1962) On the frequency equation for Love waves due to abrupt thickening of the crustal layer. Geofis Pura e Appl 52(1):59–68

    Article  Google Scholar 

  • Pilant WL (1979) Elastic waves in the Earth, Vol. 11 of developments in solid earth geophysics. Series

  • Pujol J (2003) Elastic wave propagation and generation in seismology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sahu SA, Saroj PK, Dewangan N (2014) SH-waves in viscoelastic heterogeneous layer over half space with self weight. Arch Appl Mech 84(2):235–245

    Article  Google Scholar 

  • Sato Y (1952) Love waves propagated upon heterogeneous medium. Bull Earthq Res Inst Univ Tokyo 30:1–12

    Google Scholar 

  • Singh BM, Singh SJ, Chopra SD, Gogna ML (1976) On love waves in laterally and vertically heterogeneous layered media. Geophys J Int 45(2):357–370

  • Singh AK, Das A, Chattopadhyay A, Dhua S (2015) Dispersion of shear wave propagating in vertically heterogeneous double layers overlying an initially stressed isotropic half-space. Soil Dyn Earthq Eng 6(9):16–27

    Article  Google Scholar 

  • Sinha NK (1967) Propagation of Love waves in a non-homogeneous stratum of finite depth sandwiched between two semi-infinite isotropic media. Pure Appl Geophys 67(1):65–70

    Article  Google Scholar 

  • Watson GN (1958) A treatise on the theory of Bessel functions. Cambridge University Press, New York

    Google Scholar 

Download references

Acknowledgements

The authors convey their sincere thanks to Indian Institute of Technology (Indian School of Mines), Dhanbad, for providing JRF to Ms. Shalini Saha and also for facilitating them with its best facility for research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Saha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendices

Appendix I

$$ \begin{aligned} R_{1} & = J_{{p_{1} }}^{\prime } (\delta_{1} e^{{ - n_{\,1} h_{\,1} }} )Y_{{p_{1} }} (\delta_{1} ) - Y_{{p_{1} }}^{\prime } (\delta_{1} e^{{ - n_{\,1} h_{\,1} }} )J_{{p_{1} }} (\delta_{1} ),R_{2} = J_{{p_{1} }}^{\prime } (\delta_{1} e^{{ - n_{\,1} h_{\,1} }} )Y_{{p_{1} }}^{\prime } \left( {\delta_{1} } \right) - Y_{{p_{1} }}^{\prime } (\delta_{1} e^{{ - n_{\,1} h_{\,1} }} )J_{{p_{1} }}^{\prime } (\delta_{1} ), \\ R_{3} & = J_{{p_{2} }}^{\prime } (\delta_{2} e^{{n_{\,2} h_{\,2} }} )Y_{{p_{2} }} (\delta_{2} ) - Y_{{p_{2} }}^{\prime } (\delta_{2} e^{{n_{\,2} h_{\,2} }} )J_{{p_{2} }} (\delta_{2} ),R_{4} = J_{{p_{2} }} (\delta_{2} e^{{n_{\,2} h_{\,2} }} )Y_{{p_{2} }} (\delta_{2} ) - Y_{{p_{2} }} (\delta_{2} e^{{n_{\,2} h_{\,2} }} )J_{{p_{2} }} (\delta_{2} ), \\ R_{5} & = J_{{p_{2} }}^{\prime } (\delta_{2} e^{{n_{2} h_{2} }} )Y_{{p_{2} }} '(\delta_{2} ) - Y_{{p_{2} }}^{\prime } (\delta_{2} e^{{n_{2} h_{2} }} )J_{{p_{2} }} '(\delta_{2} ),R_{6} = J_{{p_{2} }} (\delta_{2} e^{{n_{\,2} h_{2} }} )Y_{{p_{2} }}^{\prime } (\delta_{2} ) - Y_{{p_{2} }} (\delta_{2} e^{{n_{\,2} h_{2} }} )J_{{p_{2} }}^{\prime } (\delta_{2} ), \\ \end{aligned} $$
$$ p_{1} \sec \phi_{1} = \frac{kc}{{n_{\,1} \beta_{1}^{(1)} }}e^{{ - n_{1} h_{1} }} ,\quad p_{2} \sec \phi_{2} = \frac{kc}{{n_{\,1} \beta_{1}^{(1)} }},\quad p_{1} \tan \phi_{1} = \frac{k}{{n_{1} }}\sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(1)} )^{2} }} - 1 + \zeta_{1}^{(1)} } \left[ {1 - \frac{{c^{2} n_{1} h_{1} }}{{c^{2} - (\beta_{1}^{(1)} )^{2} }}} \right], $$
$$ p_{1} \tan \phi_{2} = \frac{k}{{n_{1} }}\sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(1)} )^{2} }} - 1 + \zeta_{1}^{(1)} } ,(\phi_{1} - \phi_{2} )\sim n_{1} h_{1} \frac{{\sqrt {1 - \zeta_{1}^{(1)} } }}{{\sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(1)} )^{2} }} - 1 + \zeta_{1}^{(1)} } }}, $$
$$ p_{1} (\tan \phi_{1} - \tan \phi_{2} ) - p_{1} (\phi_{1} - \phi_{2} )\sim - kh_{1} \sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(1)} )^{2} }} - 1 + \zeta_{1}^{(1)} } , $$
$$ \sin \phi_{1} \sim \frac{{\beta_{1}^{(1)} }}{c}\sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(1)} )^{2} }} - 1 + \zeta_{1}^{(1)} } \sim \sin \phi_{2} ,\quad p_{2} \sec \phi_{3} = \frac{kc}{{n_{2} \beta_{2}^{(1)} }}e^{{n_{2} h_{2} }} ,\quad p_{2} \sec \phi_{4} = \frac{kc}{{n_{2} \beta_{2}^{(1)} }}, $$
$$ p_{2} \tan \phi_{3} = \frac{k}{{n_{2} }}\sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(1)} )^{2} }} - 1 + \zeta_{2}^{(1)} } ,\quad p_{2} \tan \phi_{4} = \frac{k}{{n_{2} }}\sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(1)} )^{2} }} - 1 + \zeta_{2}^{(1)} } \left[ {1 + \frac{{c^{2} n_{2} h_{2} }}{{c^{2} - (\beta_{2}^{(1)} )^{2} }}} \right], $$
$$ (\phi_{3} - \phi_{4} )\sim n_{2} h_{2} \frac{{\sqrt {1 - \zeta_{2}^{(1)} } }}{{\sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(1)} )^{2} }} - 1 + \zeta_{2}^{\left( 1 \right)} } }},\quad p_{2} (\tan \phi_{3} - \tan \phi_{4} ) - p_{2} (\phi_{3} - \phi_{4} )\sim kh_{2} \sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(1)} )^{2} }} - 1 + \zeta_{2}^{(1)} } , $$
$$ {\text{and}}\;\sin \phi_{3} \sim \frac{{\beta_{2}^{(1)} }}{c}\sqrt {\frac{{c^{2} }}{{\left( {\beta_{2}^{(1)} } \right)^{2} }} - 1 + \zeta_{2}^{(1)} } \sim \sin \phi_{4} . $$

Appendix II

$$ \begin{aligned} R_{7} = J_{{q_{1} }} (\delta_{1} e^{{l_{1} h_{1} }} )Y_{{q_{1} }} (\delta_{1} ) - J_{{q_{1} }} (\delta_{1} )Y_{{q_{1} }} (\delta_{1} e^{{l_{1} h_{1} }} ),\quad R_{8} = J_{{q_{1} }}^{\prime } (\delta_{1} e^{{l_{1} h_{1} }} )Y_{{q_{1} }} (\delta_{1} ) - J_{{q_{1} }} (\delta_{1} )Y_{{q_{1} }}^{\prime } (\delta_{1} e^{{l_{1} h_{1} }} ), \hfill \\ R_{9} = J_{{q_{1} }} (\delta_{1} e^{{l_{1} h_{1} }} )Y_{{q_{1} }}^{\prime } (\delta_{1} ) - J_{{q_{1} }}^{\prime } (\delta_{1} )Y_{{q_{1} }} (\delta_{1} e^{{l_{1} h_{1} }} ),\quad R_{10} = J_{{q_{1} }}^{\prime } (\delta_{1} e^{{l_{1} h_{1} }} )Y_{{q_{1} }}^{\prime } (\delta_{1} ) - J_{{q_{1} }}^{\prime } (\delta_{1} )Y_{{q_{1} }}^{\prime } (\delta_{1} e^{{l_{1} h_{1} }} ), \hfill \\ \end{aligned} $$
$$ \begin{aligned} R_{11} = J_{{q_{2} }} (\delta_{2} e^{{ - l_{2} h_{2} }} )Y_{{q_{2} }} (\delta_{2} ) - J_{{q_{2} }} (\delta_{2} )Y_{{q_{2} }} (\delta_{2} e^{{ - l_{2} h_{2} }} ),\quad R_{12} = J_{{q_{2} }} (\delta_{2} e^{{ - l_{2} h_{2} }} )Y_{{q_{2} }}^{\prime } (\delta_{2} ) - J_{{q_{2} }}^{\prime } (\delta_{2} )Y_{{q_{2} }} (\delta_{2} e^{{ - l_{2} h_{2} }} ), \hfill \\ R_{13} = J_{{q_{2} }}^{\prime } (\delta_{2} e^{{ - l_{2} h_{2} }} )Y_{{q_{2} }} (\delta_{2} ) - J_{{q_{2} }} (\delta_{2} )Y_{{q_{2} }}^{\prime } (\delta_{2} e^{{ - l_{2} h_{2} }} ),\quad R_{14} = J_{{q_{2} }}^{\prime } (\delta_{2} e^{{ - l_{2} h_{2} }} )Y_{{q_{2} }}^{\prime } (\delta_{2} ) - J_{{q_{2} }}^{\prime } (\delta_{2} )Y_{{q_{2} }}^{\prime } (\delta_{2} e^{{ - l_{2} h_{2} }} ). \hfill \\ \end{aligned} $$
$$ \left[ {J_{{q_{1} }} (\gamma_{1} e^{{l_{1} h_{1} }} )Y_{{q_{1} }} (\gamma_{1} ) - Y_{{q_{1\,} }} (\delta \gamma_{1} e^{{l_{1} h_{1} }} )J_{{q_{1} }} (\gamma_{1} )} \right] \approx \frac{{ - 2\sin [q_{1} (\tan \psi_{1} - \tan \psi_{2} ) - q_{1} (\psi_{1} - \psi_{2} )]}}{{\pi q_{1} \sqrt {\tan \psi_{1} \tan \psi_{2} } }}, $$
$$ \left[ {J_{{q_{2} }} (\gamma_{2} e^{{ - l_{2} h_{2} }} )Y_{{q_{2} }} (\delta_{2} ) - Y_{{q_{2} }} (\gamma_{2} e^{{ - l_{\,2} h_{2} }} )J_{{q_{2} }} (\gamma_{2} )} \right] \approx \frac{{ - 2\sin [q_{2} (\tan \psi_{3} - \tan \psi_{4} ) - q_{2} (\psi_{3} - \psi_{4} )]}}{{\pi q_{2} \sqrt {\tan \psi_{3} \tan \psi_{4} } }}, $$
$$ \left[ {J_{{q_{1} }} (\gamma_{1} e^{{l_{1} h_{1} }} )Y_{{q_{1} }}^{\prime } (\gamma_{1} ) - Y_{{q_{1\,} }} (\gamma_{1} e^{{l_{1} h_{1} }} )J_{{q_{1} }}^{\prime } (\gamma_{1} )} \right] \approx \frac{{2\sin \psi_{2} \cos [q_{1} (\tan \psi_{1} - \tan \psi_{2} ) - q_{1} (\psi_{1} - \psi_{2} )]}}{{\pi q_{1} \sqrt {\tan \psi_{1} \tan \psi_{2} } }}, $$
$$ \left[ {J_{{q_{2} }} (\gamma_{2} e^{{ - l_{2} h_{2} }} )Y_{{q_{2} }}^{\prime } (\gamma_{2} ) - Y_{{q_{2} }} (\gamma_{2} e^{{ - l_{2} h_{2} }} )J_{{q_{2} }}^{\prime } (\gamma_{2} )} \right] \approx \frac{{2\sin \psi_{4} \cos [q_{2} (\tan \psi_{3} - \tan \psi_{4} ) - q_{2} (\psi_{3} - \psi_{4} )]}}{{\pi q_{2} \sqrt {\tan \psi_{3} \tan \psi_{4} } }}, $$
$$ \left[ {J_{{q_{1} }}^{\prime } (\gamma_{1} e^{{l_{1} h_{1} }} )Y_{{q_{1} }} (\gamma_{1} ) - Y_{{q_{1\,} }}^{\prime } (\gamma_{1} e^{{l_{1} h_{1} }} )J_{{q_{1} }} (\gamma_{1} )} \right] \approx \frac{{ - 2sin\psi_{1} \cos [q_{1} (\tan \psi_{1} - \tan \psi_{2} ) - q_{1} (\psi_{1} - \psi_{2} )]}}{{\pi q_{1} \sqrt {\tan \psi_{1} \tan \psi_{2} } }}, $$
$$ \left[ {J_{{q_{2} }}^{\prime } (\gamma_{2} e^{{ - l_{2} h_{2} }} )Y_{{q_{2} }} (\gamma_{2} ) - Y_{{q_{2} }} '(\gamma_{2} e^{{ - l_{2} h_{2} }} )J_{{q_{2} }} (\gamma_{2} )} \right] \approx \frac{{ - 2\sin \psi_{3} \cos [q_{2} (\tan \psi_{3} - \tan \psi_{4} ) - q_{2} (\psi_{3} - \psi_{4} )]}}{{\pi q_{2} \sqrt {\tan \psi_{3} \tan \psi_{4} } }}, $$
$$ \left[ {J_{{q_{1} }}^{\prime } (\gamma_{1} e^{{l_{1} h_{1} }} )Y_{{q_{1} }}^{\prime } (\gamma_{1} ) - Y_{{q_{1\,} }}^{\prime } (\gamma_{1} e^{{l_{1} h_{1} }} )J_{{q_{1} }}^{\prime } (\gamma_{1} )} \right] \approx \frac{{ - 2\sin \psi_{1} \sin \psi_{2} \sin [q_{1} (\tan \psi_{1} - \tan \psi_{2} ) - q_{1} (\psi_{1} - \psi_{2} )]}}{{\pi q_{1} \sqrt {\tan \psi_{1} \tan \psi_{2} } }}, $$
$$ \left[ {J_{{q_{2} }}^{\prime } (\gamma_{2} e^{{ - l_{2} h_{2} }} )Y_{{q_{2} }}^{\prime } (\gamma_{2} ) - Y_{{q_{2} }}^{\prime } (\gamma_{2} e^{{\, - l_{2} \,h_{2} }} )J_{{q_{2} }}^{\prime } (\gamma_{2} )} \right] \approx \frac{{ - 2\sin \psi_{3} \sin \psi_{4} \sin [q_{2} (\tan \psi_{3} - \tan \psi_{4} ) - q_{2} (\psi_{3} - \psi_{4} )]}}{{\pi q_{2} \sqrt {\tan \psi_{3} \tan \psi_{4} } }}, $$
$$ q_{1} \sec \psi_{1} = \frac{kc}{{l_{1} \beta_{1}^{\left( 2 \right)} }}e^{{l_{1} h_{1} }} ,\quad q_{1} \sec \psi_{2} = \frac{kc}{{l_{1} \beta_{1}^{(2)} }},\quad q_{1} \tan \psi_{1} = \frac{k}{{l_{1} }}\sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(2)} )^{2} }} - 1 + \zeta_{1}^{\left( 1 \right)} } \left[ {1 + \frac{{c^{2} l_{1} h_{1} }}{{c^{2} - (\beta_{1}^{(2)} )^{2} }}} \right], $$
$$ q_{1} \tan \psi_{2} = \frac{k}{{l_{1} }}\sqrt {\frac{{c^{2} }}{{\left( {\beta_{1}^{(2)} } \right)^{2} }} - 1 + \zeta_{1}^{(2)} } ,\quad \psi_{1} - \psi_{2} \sim l_{1} h_{1} \frac{{\sqrt {1 - \zeta_{1}^{(2)} } }}{{\sqrt {\frac{{c^{2} }}{{\left( {\beta_{1}^{(2)} } \right)^{2} }} - 1 + \zeta_{1}^{(2)} } }}, $$
$$ q_{1} (\tan \psi_{1} - \tan \psi_{2} ) - q_{1} (\psi_{1} - \psi_{2} )\sim kh_{1} \sqrt {\frac{{c^{2} }}{{\left( {\beta_{1}^{(2)} } \right)^{2} }} - 1 + \zeta_{1}^{(2)} } ,\quad \sin \psi_{1} \sim \frac{{\beta_{1}^{(2)} }}{c}\sqrt {\frac{{c^{2} }}{{\left( {\beta_{1}^{(2)} } \right)^{2} }} - 1 + \zeta_{1}^{(2)} } \sim \sin \psi_{2} . $$
$$ q_{2} \sec \psi_{3} = \frac{kc}{{l_{2} \beta_{2}^{(1)} }}e^{{ - l_{2} h_{2} }} ,\quad q_{2} \sec \psi_{4} = \frac{kc}{{l_{2} \beta_{2}^{(2)} }},\quad q_{2} \tan \psi_{3} = \frac{k}{{l_{2} }}\sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(2)} )^{2} }} - 1 + \zeta_{2}^{(2)} } \left[ {1 - \frac{{c^{2} l_{2} h_{2} }}{{c^{2} - (\beta_{2}^{(2)} )^{2} }}} \right], $$
$$ q_{2} \tan \psi_{4} = \frac{k}{{l_{2} }}\sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(2)} )^{2} }} - 1 + \zeta_{2}^{(2)} } ,\quad q_{2} (\tan \psi_{3} - \tan \psi_{4} ) - q_{2} (\psi_{3} - \psi_{4} )\sim - kh_{2} \sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(2)} )^{2} }} - 1 + \zeta_{2}^{(2)} } , $$
$$ \psi_{3} - \psi_{4} \sim l_{2} h_{2} \frac{{\sqrt {1 - \zeta_{2}^{\left( 2 \right)} } }}{{\sqrt {\frac{{c^{2} }}{{\left( {\beta_{2}^{(2)} } \right)^{2} }} - 1 + \zeta_{2}^{(2)} } }}\quad {\text{and}}\quad \sin \psi_{3} \sim \frac{{\beta_{2}^{(2)} }}{c}\sqrt {\frac{{c^{2} }}{{\left( {\beta_{2}^{(2)} } \right)^{2} }} - 1 + \zeta_{2}^{(2)} } \sim \sin \psi_{4} . $$

Appendix III

$$ \begin{aligned} R_{15} = J_{{s_{3} }} (\varOmega_{1} e^{{\hbar_{1} h_{1} }} )Y_{{s_{1} }} (\varOmega_{1} ) - J_{{s_{3} }} (\varOmega_{1} )Y_{{s_{3} }} (\varOmega_{1} e^{{\hbar_{1} h_{1} }} ),\quad R_{16} = J_{{s_{3} }}^{'} (\varOmega_{1} e^{{\hbar_{1} h_{1} }} )Y_{{s_{3} }} (\varOmega_{1} ) - J_{{s_{3} }} (\varOmega_{1} )Y_{{s_{3} }}^{'} (\varOmega_{1} e^{{\hbar_{1} h_{1} }} ), \hfill \\ R_{17} = J_{{s_{3} }}^{{}} (\varOmega_{1} e^{{\hbar_{1} h_{1} }} )Y_{{s_{3} }}^{'} (\varOmega_{1} ) - J_{{s_{3} }}^{'} (\varOmega_{1} )Y_{{s_{3} }}^{{}} (\varOmega_{1} e^{{\hbar_{1} h_{1} }} ),\quad R_{18} = J_{{s_{3} }}^{'} (\varOmega_{1} e^{{\hbar_{1} h_{1} }} )Y_{{s_{3} }}^{'} (\varOmega_{1} ) - J_{{s_{3} }}^{'} (\varOmega_{1} )Y_{{s_{3} }}^{'} (\varOmega_{1} e^{{\hbar_{1} h_{1} }} ), \hfill \\ \end{aligned} $$
$$ \begin{aligned} R_{19} = J_{{s_{4} }} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )Y_{{s_{4} }} (\varOmega_{2} ) - J_{{s_{4} }} (\varOmega_{2} )Y_{{s_{4} }} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} ),\quad R_{20} = J_{{s_{4} }}^{'} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )Y_{{s_{4} }} (\varOmega_{2} ) - J_{{s_{4} }} (\varOmega_{2} )Y_{{s_{4} }}^{'} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} ), \hfill \\ R_{21} = J_{{s_{4} }}^{{}} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )Y_{{s_{4} }}^{'} (\varOmega_{2} ) - J_{{s_{4} }}^{'} (\varOmega_{2} )Y_{{s_{4} }}^{{}} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} ),\quad R_{22} = J_{{s_{4} }}^{'} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )Y_{{s_{4} }}^{'} (\varOmega_{2} ) - J_{{s_{4} }}^{'} (\varOmega_{2} )Y_{{s_{4} }}^{'} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} ), \hfill \\ \end{aligned} $$
$$ \left[ {J_{{s_{3} }} (\varOmega_{1} e^{{\hbar_{1} h_{\,1} }} )Y_{{s_{3} }} (\varOmega_{1} ) - Y_{{s_{3} }} (\varOmega_{1} e^{{\hbar_{1} h_{\,1} }} )J_{{s_{3} }} (\varOmega_{1} )} \right] \approx \frac{{ - \,2\sin [s_{3} (\tan \phi_{21} - \tan \phi_{22} ) - s_{3} (\phi_{21} - \phi_{22} )]}}{{\pi s_{3} \sqrt {\tan \phi_{21} \tan \phi_{22} } }}, $$
$$ \left[ {J_{{s_{4} }} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )Y_{{s_{4} }} (\varOmega_{2} ) - Y_{{s_{4} }} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )J_{{s_{2} }} (\varOmega_{2} )} \right] \approx \frac{{ - \,2\sin [s_{4} (\tan \phi_{23} - \tan \phi_{24} ) - s_{4} (\phi_{23} - \phi_{24} )]}}{{\pi s_{4} \sqrt {\tan \phi_{23} \tan \phi_{24} } }}, $$
$$ \left[ {J_{{s_{3} }} (\varOmega_{1} e^{{\hbar_{1} h_{\,1} }} )Y_{{s_{3} }} '(\varOmega_{1} ) - Y_{{s_{3} }} (\varOmega_{1} e^{{\hbar_{1} h_{\,1} }} )J_{{s_{3} }} '(\varOmega_{1} )} \right] \approx \frac{{2\sin \phi_{21} \sin [s_{3} (\tan \phi_{21} - \tan \phi_{22} ) - s_{3} (\phi_{21} - \phi_{22} )]}}{{\pi s_{3} \sqrt {\tan \phi_{21} \tan \phi_{22} } }}, $$
$$ \left[ {J_{{s_{4} }} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )Y_{{s_{4} }} '(\varOmega_{2} ) - Y_{{s_{4} }} (\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )J_{{s_{4} }} '(\varOmega_{2} )} \right] \approx \frac{{2\sin \phi_{24} \cos [s_{4} (\tan \phi_{23} - \tan \phi_{24} ) - s_{4} (\phi_{23} - \phi_{24} )]}}{{\pi s_{4} \sqrt {\tan \phi_{23} \tan \phi_{24} } }}, $$
$$ \left[ {J_{{s_{3} }} '(\varOmega_{1} e^{{\hbar_{1} h_{\,1} }} )Y_{{s_{3} }} (\varOmega_{1} ) - Y_{{s_{3} }} '(\varOmega_{1} e^{{\hbar_{1} h_{\,1} }} )J_{{s_{3} }} (\varOmega_{1} )} \right] \approx \frac{{ - \,2\sin \phi_{21} \cos [s_{3} (\tan \phi_{21} - \tan \phi_{22} ) - s_{3} (\phi_{21} - \phi_{22} )]}}{{\pi s_{3} \sqrt {\tan \phi_{21} \tan \phi_{22} } }}, $$
$$ \left[ {J_{{s_{4} }} '(\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )Y_{{s_{4} }} (\varOmega_{2} ) - Y_{{s_{4} }} '(\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )J_{{s_{4} }} (\varOmega_{2} )} \right] \approx \frac{{ - \,2\sin \phi_{23} \cos [s_{4} (\tan \phi_{23} - \tan \phi_{24} ) - s_{4} (\phi_{23} - \phi_{24} )]}}{{\pi s_{4} \sqrt {\tan \phi_{23} \tan \phi_{24} } }}, $$
$$ \left[ {J_{{s_{3} }} '(\varOmega_{1} e^{{\hbar_{1} h_{\,1} }} )Y_{{s_{3} }} '(\varOmega_{1} ) - Y_{{s_{3} }} '(\varOmega_{1} e^{{\hbar_{1} h_{\,1} }} )J_{{s_{3} }} '(\varOmega_{1} )} \right] \approx \frac{{ - \,2\sin \phi_{21} \sin \phi_{22} \sin [s_{3} (\tan \phi_{21} - \tan \phi_{22} ) - s_{3} (\phi_{21} - \phi_{22} )]}}{{\pi s_{3} \sqrt {\tan \phi_{21} \tan \phi_{22} } }}, $$
$$ \left[ {J_{{s_{4} }} '(\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )Y_{{s_{4} }} '(\varOmega_{2} ) - Y_{{s_{4} }} '(\varOmega_{2} e^{{ - \hbar_{2} h_{2} }} )J_{{s_{4} }} '(\varOmega_{2} )} \right] \approx \frac{{ - \,2\sin \phi_{23} \cos [s_{4} (\tan \phi_{23} - \tan \phi_{24} ) - s_{4} (\phi_{23} - \phi_{24} )]}}{{\pi s_{4} \sqrt {\tan \phi_{23} \tan \phi_{24} } }}, $$
$$ s_{3} \sec \varphi_{21} = \frac{kc}{{\hbar_{1} \beta_{1}^{(3)} }}e^{{\hbar_{1} h_{1} }} ,\quad s_{3} \sec \varphi_{22} = \frac{kc}{{\hbar_{1} \beta_{1}^{(3)} }},\quad s_{3} \tan \varphi_{21} = \frac{k}{{\hbar_{1} }}\sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(3)} )^{2} }} - 1 + \zeta_{1}^{(3)} } \left[ {1 - \frac{{c^{2} \hbar_{1} h_{1} }}{{c^{2} - (\beta_{1}^{(3)} )^{2} }}} \right], $$
$$ s_{3} \tan \phi_{22} = \frac{k}{{\hbar_{1} }}\sqrt {\frac{{c^{2} }}{{\left( {\beta_{\,1}^{(3)} } \right)^{2} }} - 1 + \zeta_{1}^{(3)} } ,\quad \left( {\phi_{21} - \phi_{22} } \right)\sim \hbar_{1} h_{1} \frac{{\sqrt {1 - \zeta_{1}^{(3)} } }}{{\sqrt {\frac{{c^{2} }}{{\left( {\beta_{\,1}^{(3)} } \right)^{2} }} - 1 + \zeta_{1}^{(3)} } }}, $$
$$ s_{3} (\tan \phi_{21} - \tan \phi_{22} ) - s_{3} (\phi_{21} - \phi_{22} )\sim kh_{1} \sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(3)} )^{2} }} - 1 + \zeta_{1}^{(3)} } , $$
$$ \sin \phi_{21} \sim \frac{{\beta_{1}^{(3)} }}{c}\sqrt {\frac{{c^{2} }}{{(\beta_{1}^{(3)} )^{2} }} - 1 + \zeta_{1}^{(3)} } \sim \sin \phi_{22} ,\quad s_{4} \sec \phi_{23} = \frac{kc}{{\hbar_{2} \beta_{2}^{(3)} }}e^{{\hbar_{2} h_{2} }} ,\quad s_{4} \sec \phi_{24} = \frac{kc}{{\hbar_{2} \beta_{2}^{(3)} }}, $$
$$ s_{4} \tan \phi_{23} = \frac{k}{{\hbar_{2} }}\sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(3)} )^{2} }} - 1 + \zeta_{2}^{(3)} } ,\quad s_{4} \tan \phi_{24} = \frac{k}{{\hbar_{2} }}\sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(3)} )^{2} }} - 1 + \zeta_{2}^{(3)} } \left[ {1 + \frac{{c^{2} \hbar_{2} h_{2} }}{{c^{2} - (\beta_{2}^{(3)} )^{2} }}} \right], $$
$$ \left( {\phi_{23} - \phi_{24} } \right)\sim \hbar_{2} h_{2} \frac{{\sqrt {1 - \zeta_{2}^{\left( 3 \right)} } }}{{\sqrt {\frac{{c^{2} }}{{\left( {\beta_{2}^{\left( 3 \right)} } \right)^{2} }} - 1 + \zeta_{2}^{\left( 3 \right)} } }},s_{4} \left( {tan\phi_{23} - tan\phi_{24} } \right) - s_{4} \left( {\phi_{23} - \phi_{24} } \right)\sim \hbar_{2} h_{2} \sqrt {\frac{{c^{2} }}{{\left( {\beta_{2}^{\left( 3 \right)} } \right)^{2} }} - 1 + \zeta_{2}^{\left( 3 \right)} } \,, $$
$$ {\text{and}}\;\sin \phi_{23} \sim \frac{{\beta_{2}^{(3)} }}{c}\sqrt {\frac{{c^{2} }}{{(\beta_{2}^{(3)} )^{2} }} - 1 + \zeta_{2}^{(3)} } \sim \sin \phi_{24} . $$

Appendix IV

$$ \begin{aligned} R_{23} & = I_{0}^{'} \left\{ {{{t_{1} (1 - \varepsilon_{1} h_{1} )} \mathord{\left/ {\vphantom {{t_{1} (1 - \varepsilon_{1} h_{1} )} {i\varepsilon_{1} }}} \right. \kern-0pt} {i\varepsilon_{1} }}} \right\}K_{0}^{'} ({{t_{1} } \mathord{\left/ {\vphantom {{t_{1} } {i\varepsilon_{1} }}} \right. \kern-0pt} {i\varepsilon_{1} }}) - K_{0}^{'} \left\{ {{{t_{1} (1 - \varepsilon_{1} h_{1} )} \mathord{\left/ {\vphantom {{t_{1} (1 - \varepsilon_{1} h_{1} )} {i\varepsilon_{1} }}} \right. \kern-0pt} {i\varepsilon_{1} }}} \right\}I_{0}^{'} ({{t_{1} } \mathord{\left/ {\vphantom {{t_{1} } {i\varepsilon_{1} }}} \right. \kern-0pt} {i\varepsilon_{1} }}), \\ R_{24} & = I_{0}^{'} \left\{ {{{t_{1} (1 - \varepsilon_{1} h_{1} )} \mathord{\left/ {\vphantom {{t_{1} (1 - \varepsilon_{1} h_{1} )} {i\varepsilon_{1} }}} \right. \kern-0pt} {i\varepsilon_{1} }}} \right\}K_{0}^{{}} ({{t_{1} } \mathord{\left/ {\vphantom {{t_{1} } {i\varepsilon_{1} }}} \right. \kern-0pt} {i\varepsilon_{1} }}) - K_{0}^{'} \left\{ {{{t_{1} (1 - \varepsilon_{1} h_{1} )} \mathord{\left/ {\vphantom {{t_{1} (1 - \varepsilon_{1} h_{1} )} {i\varepsilon_{1} }}} \right. \kern-0pt} {i\varepsilon_{1} }}} \right\}I_{0}^{{}} ({{t_{1} } \mathord{\left/ {\vphantom {{t_{1} } {i\varepsilon_{1} }}} \right. \kern-0pt} {i\varepsilon_{1} }}), \\ R_{25} & = I_{0}^{'} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}} \right\}K_{0}^{'} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}) - K_{0}^{'} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}} \right\}I_{0}^{'} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}), \\ R_{26} & = I_{0}^{{}} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}} \right\}K_{0}^{'} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}) - K_{0}^{{}} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}} \right\}I_{0}^{'} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}), \\ R_{27} & = I_{0}^{'} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}} \right\}K_{0}^{{}} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}) - K_{0}^{'} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}} \right\}I_{0}^{{}} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}), \\ R_{28} & = I_{0}^{{}} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}} \right\}K_{0}^{{}} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}) - K_{0}^{{}} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}} \right\}I_{0}^{{}} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {i\varepsilon_{2} }}} \right. \kern-0pt} {i\varepsilon_{2} }}), \\ R_{29} & = J_{0}^{'} ({{t_{1} } \mathord{\left/ {\vphantom {{t_{1} } {\varepsilon_{1} }}} \right. \kern-0pt} {\varepsilon_{1} }})Y_{0}^{'} \left\{ {{{t_{1} (1 - \varepsilon_{1} h_{1} )} \mathord{\left/ {\vphantom {{t_{1} (1 - \varepsilon_{1} h_{1} )} {\varepsilon_{1} }}} \right. \kern-0pt} {\varepsilon_{1} }}} \right\} - J_{0}^{'} \left\{ {{{t_{1} (1 - \varepsilon_{1} h_{1} )} \mathord{\left/ {\vphantom {{t_{1} (1 - \varepsilon_{1} h_{1} )} {\varepsilon_{1} }}} \right. \kern-0pt} {\varepsilon_{1} }}} \right\}Y_{0}^{'} ({{t_{1} } \mathord{\left/ {\vphantom {{t_{1} } {\varepsilon_{1} }}} \right. \kern-0pt} {\varepsilon_{1} }}), \\ R_{30} & = J_{0}^{'} \left\{ {{{t_{1} (1 - \varepsilon_{1} h_{1} )} \mathord{\left/ {\vphantom {{t_{1} (1 - \varepsilon_{1} h_{1} )} {\varepsilon_{1} }}} \right. \kern-0pt} {\varepsilon_{1} }}} \right\}Y_{0}^{{}} ({{t_{1} } \mathord{\left/ {\vphantom {{t_{1} } {\varepsilon_{1} }}} \right. \kern-0pt} {\varepsilon_{1} }}) - J_{0}^{{}} ({{t_{1} } \mathord{\left/ {\vphantom {{t_{1} } {\varepsilon_{1} }}} \right. \kern-0pt} {\varepsilon_{1} }})Y_{0}^{'} \left\{ {{{t_{1} (1 - \varepsilon_{1} h_{1} )} \mathord{\left/ {\vphantom {{t_{1} (1 - \varepsilon_{1} h_{1} )} {\varepsilon_{1} }}} \right. \kern-0pt} {\varepsilon_{1} }}} \right\}, \\ R_{31} & = J_{0}^{'} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }})Y_{0}^{'} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}} \right\} - J_{0}^{'} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}} \right\}Y_{0}^{'} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}), \\ R_{32} & = J_{0}^{{}} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}} \right\}Y_{0}^{'} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}) - J_{0}^{'} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }})Y_{0}^{{}} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}} \right\}, \\ R_{33} & = J_{0}^{'} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}} \right\}Y_{0}^{{}} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}) - J_{0}^{{}} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }})Y_{0}^{'} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}} \right\}, \\ R_{34} & = J_{0}^{{}} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}} \right\}Y_{0}^{{}} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}) - J_{0}^{{}} ({{t_{2} } \mathord{\left/ {\vphantom {{t_{2} } {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }})Y_{0}^{{}} \left\{ {{{t_{2} (1 + \varepsilon_{2} h_{2} )} \mathord{\left/ {\vphantom {{t_{2} (1 + \varepsilon_{2} h_{2} )} {\varepsilon_{2} }}} \right. \kern-0pt} {\varepsilon_{2} }}} \right\}, \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Chattopadhyay, A. & Singh, A.K. Impact of inhomogeneity on SH-type wave propagation in an initially stressed composite structure. Acta Geophys. 66, 1–19 (2018). https://doi.org/10.1007/s11600-017-0108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0108-8

Keywords

Navigation