Skip to main content
Log in

Comparative analysis of Vening-Meinesz Moritz isostatic models using the constant and variable crust-mantle density contrast – a case study of Zealandia

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

We compare three different numerical schemes of treating the Moho density contrast in gravimetric inverse problems for finding the Moho depths. The results are validated using the global crustal model CRUST2.0, which is determined based purely on seismic data. Firstly, the gravimetric recovery of the Moho depths is realized by solving Moritz’s generalization of the Vening-Meinesz inverse problem of isostasy while the constant Moho density contrast is adopted. The Pratt-Hayford isostatic model is then facilitated to estimate the variable Moho density contrast. This variable Moho density contrast is subsequently used to determine the Moho depths. Finally, the combined least-squares approach is applied to estimate jointly the Moho depths and density contract based on a priori error model. The EGM2008 global gravity model and the DTM2006.0 global topographic/bathymetric model are used to generate the isostatic gravity anomalies. The comparison of numerical results reveals that the optimal isostatic inverse scheme should take into consideration both the variable depth and density of compensation. This is achieved by applying the combined least-squares approach for a simultaneous estimation of both Moho parameters. We demonstrate that the result obtained using this method has the best agreement with the CRUST2.0 Moho depths. The numerical experiments are conducted at the regional study area of New Zealand’s continental shelf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Fig. 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Bassin C, Laske G and Masters T G 2000 The current limits of resolution for surface wave tomography in North America; EOS Trans AGU 81 F897.

    Google Scholar 

  • Bagherbandi M and Sjöberg L E 2011 Comparison of crustal thickness from two isostatic models versus CRUST2.0; Stud. Geophys. Geod. 55 641–666.

    Article  Google Scholar 

  • Bjerhammar A 1962 On an explicit solution of the gravimetric boundary value problem for an ellipsoidal surface of reference; Technical Report, The Royal Institute of Technology, Division of Geodesy, Stockholm.

  • Braitenberg C, Wienecke S and Wang Y 2006 Basement structures from satellite derived gravity field: The South China Sea Ridge; J. Geophys. Res. 111 B05407.

    Article  Google Scholar 

  • Dziewonski A M and Anderson D L 1981 Preliminary reference earth model; Phys. Earth Planet. Inter. 25 297–356.

    Article  Google Scholar 

  • Heiskanen W A and Vening Meinesz F A 1958 The Earth and its Gravity Field; McGraw-Hill Book Company, Inc.

  • Heiskanen W A and Moritz H 1967 Physical Geodesy; Freeman W.H. and Co., San Francisco and London, 364p.

    Google Scholar 

  • Hinze W J 2003 Bouguer reduction density, why 2.67?; Geophysics 68(5) 1559–1560.

    Article  Google Scholar 

  • Kaban M K, Schwintzer P and Tikhotsky S A 1999 Global isostatic gravity model of the Earth; Geophys. J. Int. 136 519–536.

    Article  Google Scholar 

  • Kaban M K, Schwintzer P and Reigber Ch 2004 A new isostatic model of the lithosphere and gravity field; J. Geod. 78 368–385.

    Article  Google Scholar 

  • Moritz H 1990 The Figure of the Earth; H Wichmann, Karlsruhe, 277p.

  • Pavlis N K, Factor J K and Holmes S A 2007 Terrain-related gravimetric quantities computed for the next EGM; In: Gravity Field of the Earth (eds) Kiliçoglu A and Forsberg R, Proceedings of the 1st International Symposium of the International Gravity Field Service (IGFS), Harita Dergisi, Special Issue No. 18, General Command of Mapping, Ankara, Turkey.

  • Pavlis N, Holmes S A, Kenyon S C and Factor J K 2008 An earth gravitational model to degree 2160: EGM08; Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18.

  • Sjöberg L E 2009 Solving Vening Meinesz-Moritz inverse problem in isostasy; Geophys. J. Int. 179(3) 1527– 1536.

    Article  Google Scholar 

  • Sjöberg L E and Bagherbandi M 2011 A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0.; Acta Geophys. 59(3) 502–525.

    Article  Google Scholar 

  • Sjöberg L E and Bagherbandi M 2012 Comparison of crustal thickness from two gravimetric-isostatic models and CRUST2.0.; Studia Geophys. Geod., doi: 10.1007/s11200-010-9030-0.

    Google Scholar 

  • Tenzer R, Hamayun and Vajda P 2009 Global maps of the CRUST2.0 crustal components stripped gravity disturbances; Geophys, J., Res. 114B 05408.

    Article  Google Scholar 

  • Tenzer R, Hamayun, Novák P, Gladkikh V and Vajda P 2011 Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G; Pure Appl. Geophys., doi: 10.1007/s00024-011-0410-3.

    Google Scholar 

  • Tenzer R, Gladkikh V, Vajda P and Novák P 2012 Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure; Surv. Geophys., doi: 10.1007/s10712-012-9173-3.

    Google Scholar 

  • Vening Meinesz F A 1931 Une nouvelle methode pour la reduction isostatique regionale de l’intensite de la pesanteur; Bulletin Géodésique 29 33–51.

    Article  Google Scholar 

  • Wienecke S, Braitenberg C and Götze H-J 2007 A new analytical solution estimating the flexural rigidity in the Central Andes; Geophys. J. Int. 169(3) 789–794.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof Lars E Sjöberg for useful comments, guidance and help. Mohammad Bagherbandi was supported by the Project no. 76/10:1 of the Swedish National Space Board (SNSB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ROBERT TENZER.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BAGHERBANDI, M., TENZER, R. Comparative analysis of Vening-Meinesz Moritz isostatic models using the constant and variable crust-mantle density contrast – a case study of Zealandia. J Earth Syst Sci 122, 339–348 (2013). https://doi.org/10.1007/s12040-013-0279-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0279-x

Keywords

Navigation