Skip to main content

Advertisement

Log in

Comparison of crustal thickness from two gravimetric-isostatic models and CRUST2.0

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The Mohorovičić discontinuity is the boundary between the Earth’s crust and mantle. Several isostatic hypotheses exist for estimating the crustal thickness and density variation of the Earth’s crust from gravity anomalies.

The goal of this article is to compare the Airy-Heiskanen and Vening Meinesz-Moritz (VMM) gravimetric models for determining Moho depth, with the seismic Moho (CRUST2.0 or SM) model. Numerical comparisons are performed globally as well as for some geophysically interesting areas, such as Fennoscandia, Persia, Tibet, Canada and Chile. These areas are most complicated areas in view of rough topography (Tibet, Persia and Peru and Chile), post-glacial rebound (Fennoscandia and Canada) and tectonic activities (Persia).

The mean Moho depth provided by CRUST2.0 is 22.9 ± 0.1 km. Using a constant Moho density contrast of 0.6 g/cm3, the corresponding mean values for Airy-Heiskanen and VVM isostatic models become 25.0 ± 0.04 km and 21.6 ± 0.08 km, respectively. By assuming density contrasts of 0.5 g/cm2 and 0.35 g/cm3 for continental and oceanic regions, respectively, the VMM model yields the mean Moho depth 22.6 ± 0.1 km. For this model the global rms difference to CRUST2.0 is 7.2 km, while the corresponding difference between Airy-Heiskanen model and CRUST2.0 is 11 km. Also for regional studies, Moho depths were estimated by selecting different density contrasts. Therefore, one conclusion from the study is that the global compensation by the VMM method significantly improves the agreement with the CRUST2.0 vs. the local compensation model of Airy-Heiskanen. Also, the last model cannot be correct in regions with ocean depth larger than 9 km (e.g., outside Chile), as it may yield negative Moho depths. This problem does not occur with the VMM model. A second conclusion is that a realistic variation of density contrast between continental and oceanic areas yields a better fit of the VMM model to CRUST2.0. The study suggests that the VMM model can primarily be used to densify the CRUST2.0 Moho model in many regions based on separate data by taking advantage of dense gravity data.

Finally we have found also that the gravimetric terrain correction affects the determination of the Moho depth by less than 2 km in mean values for test regions, approximately. Hence, for most practical applications of the VMM model the simple Bouguer gravity anomaly is sufficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Airy G.B., 1855. On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys. Phil. Trans. R. Soc. London B, 145, 101–104.

    Article  Google Scholar 

  • Albertella A., Migliaccio F. and Sansò F., 2002. GOCE: The Earth field by space gradiometry. Celest. Mech. Dyn. Astron., 83, 1–15.

    Article  Google Scholar 

  • Balmino G., Perosanz F., Rummel R., Sneeuw N., Sünkel H. and Woodworth P., 1998. European Views on Dedicated Gravity Field Missions: GRACE and GOCE. Earth Sciences Division Consultation Document, ESA, ESD-MAG-REP-CON-001.

  • Bassin C., Laske G. and Masters T.G., 2000. The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU, 81, F897.

    Google Scholar 

  • Bowie W., 1927. Isostasy. E.P. Dutton & Company, New York.

    Google Scholar 

  • Braitenberg C., Zadro M., Fang J., Wang Y. and Hsu H.T., 2000. The gravity and isostatic Moho undulations in Qinghai-Tibet Plateau. J. Geodyn., 30, 489–505.

    Article  Google Scholar 

  • Cordell L. and Henderson R.G., 1968. Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics, 38, 596–601.

    Article  Google Scholar 

  • Čadek O. and Martinec Z., 1991. Spherical hermonic expansion of the earth’s crustal thickness up to degree and order 30. Stud. Geophys. Geod., 35, 151–165.

    Article  Google Scholar 

  • Dyrelius D. and Vogel A., 1972. Improvement of covergency in iterative gravity interpretation. Geophys. J. R. Astron. Soc., 27, 195–205.

    Google Scholar 

  • ESA, 1999. Gravity Field and Steady-State Ocean Circulation Mission. ESA SP-1233(1), ESA Publications Division, pp. 217.

  • Fowler C.M.R., 2001. The Solid Earth: an Introduction to Global Geophysics. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Laske G., Masters G. and Reif C., 2000. A New Global Crustal Model at 2×2 Degrees (CRUST2.0). http://igppweb.ucsd.edu/~gabi/rem.dir/crust/crust2.html.

  • Geiss E., 1987. A new compilation of crustal thickness data for the Mediterranean area. Ann. Geophys., 5B, 623–630.

    Google Scholar 

  • Gómez Oritz D. and Agarwal B.N.P., 2005. 3DINVER.M: a MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Comput. Geosci., 31, 513–520, DOI: 10.1016/j.candgeo.2004.11.004.

    Article  Google Scholar 

  • Haines S.S., Klemperer S.L., Brown L., Jingru G., Mechie J., Meissner R., Ross A. and Wenjin Z., 2003. INDEPTH III seismic data: From surface observations to deep crustal processes in Tibet. Tectonics, 22, 1001, DOI: 10.1029/2001TC001305.

    Article  Google Scholar 

  • Heiskanen W.A. and Vening Meinesz F.A., 1958. The Earth and its Gravity Field. McGraw-Hill Inc., New York.

    Google Scholar 

  • Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Co., San Francisco and London.

    Google Scholar 

  • Jin Y., McNutt M.K. and Zhu Y-S., 1996. Mapping the descent of Indian and Eurasian plates beneath the Tibetan Plateau from gravity anomalies. J. Geophys. Res., 101, 11275–11290.

    Article  Google Scholar 

  • Kiamehr R. and Gómez-Ortiz D., 2009. A new 3D Moho depth model for Iran based on the terrestrial gravity data and EGM2008 model. Geophys. Res. Abstr., 11, EGU2009-321-1, 2009.

    Google Scholar 

  • Martinec Z., 1993. A Model of compensation of topographic masses. Surv. Geophys., 14, 525–535.

    Article  Google Scholar 

  • Martinec Z., 1994. The density contrast at the Mohorovičič discontinuity. Geophys. J. Int., 117, 539–544.

    Article  Google Scholar 

  • Martinec Z., 1998. Boundary-Value Problems for Gravimetric Determination of a Precise Geoid. Lecture Notes in Earth Sciences No. 73, Springer-Verlag, Berlin, Heidelberg, Germany.

    Google Scholar 

  • Moritz H., 1980. Advanced Physical Geodesy. Herbert Wichman, Karlsruhe, Germany.

    Google Scholar 

  • Moritz H., 1990. The Figure of the Earth, Herbert Wichmann, Karlsruhe, Germany.

    Google Scholar 

  • Mooney W.D., Laske G. and Masters T.G., 1998. CRUST 5.1: a global crustal model at 5×5 deg. J. Geophys. Res., 103, 727–747.

    Article  Google Scholar 

  • Nataf H.C. and Ricard Y., 1996. 3SMAC: An a priori tomographic model of the upper mantle based on geophysical modelling. Phys. Earth Planet. Inter., 95, 101–122.

    Article  Google Scholar 

  • Novák P. and Grafarend E.W., 2005. The ellipsoidal representation of the topographical potential and its vertical gradient. J. Geodesy, 78, 691–706.

    Article  Google Scholar 

  • Oldenburg D.W., 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39, 526–536

    Article  Google Scholar 

  • Parker R.L., 1972. The rapid calculation of potential anomalies. Geophys J. R. Astron. Soc., 31, 447–455.

    Google Scholar 

  • Pavlis N., Holmes S., Kenyon S., Schmidt D. and Trimmer R., 2005. A preliminary gravitational model to degree 2160. In: Jekeli C., Bastos L. and Fernandes J. (Eds.), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129, Springer-Verlag, Berlin, Heidelberg, Germany, 18–23.

    Chapter  Google Scholar 

  • Pavlis N., Factor K. and Holmes S.A., 2006. Terrain-Related Gravimetric Quantities Computed for the Next EGM. http://earth-info.nga.mil/GandG/wgs84/gravitymod/new_egm/EGM08_papers/NPavlis&al_S8_Revised111606.pdf.

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. http://www.massentransporte.de/fileadmin/2kolloquium_muc/2008-10-08/Bosch/EGM2008.pdf.

  • Pratt J.H., 1855. On the attraction of the Himalaya Mountains and of the elevated regions beyond upon the plumb-line in India. Phil. Trans. R. Soc. London B, 145, 53–100.

    Article  Google Scholar 

  • Reigber C., Jochmann H., Wünsch J., Petrovic S., Schwintzer P., Barthelmes F., Neumayer K.H., König R., Förste C., Balmino G., Biancale R., Lemoine J.M., Loyer S. and Perosanz F., 2004b. Earth gravity field and seasonal variability from CHAMP. In: Reigber C., Lühr H., Schwintzer P. and Wickert J. (Eds), Earth Observation with CHAMP - Results from Three Years in Orbit. Springer-Verlag, Berlin, Heidelberg, 25–30.

    Google Scholar 

  • Rummel R., Rapp R.H., Sünkel H. and Tscherning C.C., 1988. Comparisons of Global Topographic-Isostatic Models to the Earth’s Observed Gravity Field. Report No. 388, Department of Geodetic Science and Surveying, Ohio State University, Columbus, Ohio.

    Google Scholar 

  • Shin Y.H., Xu H., Braitenberg C., Fang J. and Wang Y., 2007. Moho undulation beneath Tibet from GRACE-integrated gravity data. Geophys. J. Int., 170, 971–985, DOI: 10.1111/j.1365-246X.2007.03457.x.

    Article  Google Scholar 

  • Shin Y.H., Choi K.S. and Xu H., 2006. Three-dimensional forward and inverse models for gravity fields based on the Fast Fourier Transform. Comput. Geosci., 32, 727–738, DOI: 10.1016/j.cageo.2005.10.002.

    Article  Google Scholar 

  • Sjöberg L.E., 1998a. The exterior Airy/Heiskanen topographic-isostatic gravity potential anomaly and the effect of analytical continuation in Stokes’ formula. J. Geodesy, 72, 654–662.

    Article  Google Scholar 

  • Sjöberg L.E., 1998b. On the Pratt and Airy models of isostatic geoid undulations. J. Geodyn., 26, 137–147.

    Article  Google Scholar 

  • Sjöberg L.E., 2009. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys J. Int., 179, 1527–1536, DOI: 10.1111/j.1365-246X.2009.04397.x.

    Article  Google Scholar 

  • Sjöberg L.E. and Bagherbandi M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys., 58, 502–525, DOI: 10.2478/s11600-011-0003-7.

    Article  Google Scholar 

  • Soller D.R., Ray R.D. and Brown R.D., 1982. A new global crustal thickness model. Tectonics, 1, 125–149.

    Article  Google Scholar 

  • Sünkel H., 1986. Global topographic-isostatic models. In: Sünkel H. (Ed.), Mathematical and Numerical Techniques in Physical Geodesy, Lecture Notes in Earth Sciences 7, Springer-Verlag, Berlin, Germany, 417–462.

    Chapter  Google Scholar 

  • Tapley B., Ries J., Bettadpur S., Chambers D., Cheng M., Condi F., Gunter B., Kang Z., Nagel P., Pastor R., Pekker T., Poole S. and Wang F., 2005. GGM02-an improved Earth gravity field model from GRACE. J. Geodesy, 79, 467–478.

    Article  Google Scholar 

  • Tenzer R., Hamayun and Vajda P., 2009. Global maps of the CRUST2.0 components stripped gravity disturbances. J. Geophys. Res., 114, B05408.

    Article  Google Scholar 

  • Vening Meinesz F.A., 1931. Une nouvelle methode pour la reduction isostatique regionale de l’intensite de la pesanteur. Bull. Geod., 29, 33–51 (in French).

    Article  Google Scholar 

  • Vening Meinesz F.A., 1940. Fundamental tables for regional isostatic reduction of gravity value. Publ. Netherlands Acad. Sci., Sec. 1, 17(3), 1–44.

    Google Scholar 

  • Vening Meinesz F.A., 1941. Tables for Regional and Local Isostatic Reduction (Airy System) for Gravity Values. Netherlands Geodetic Commission, Delft, The Netherlands.

    Google Scholar 

  • Wild F. and Heck B., 2004. A comparison of different isostatic models applied to satellite gravity gradiometry. In: Jekeli C., Bastos L. and Fernandes J. (Eds.), Gravity, Geoid and Space Missions. International Association of Geodesy Symposia, 129, Springer-Verlag, Berlin, Heidelberg, Germany, 230–235.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagherbandi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagherbandi, M., Sjöberg, L.E. Comparison of crustal thickness from two gravimetric-isostatic models and CRUST2.0. Stud Geophys Geod 55, 641–666 (2011). https://doi.org/10.1007/s11200-010-9030-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-010-9030-0

Keywords

Navigation