Skip to main content
Log in

Equatorial modes observed in atmospheric variables

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Wavenumber-frequency spectral analysis of different atmospheric variables has been carried out using 25 years of data. The area considered is the tropical belt 25°S–25°N. A combined FFT-wavelet analysis method has been used for this purpose. Variables considered are outgoing long-wave radiation (OLR), 850 hPa divergence, zonal and meridional winds at 850, 500 and 200 hPa levels, sea level pressure and 850 hPa geopotential height. It is shown that the spectra of different variables have some common properties, but each variable also has few features different from the rest. While Kelvin mode is prominent in OLR and zonal winds, it is not clearly observed in pressure and geopotential height fields; the latter two have a dominant wavenumber zero mode not seen in other variables except in meridional wind at 200 hPa and 850 hPa divergences. Different dominant modes in the tropics show significant variations on sub-seasonal time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cho H K, Bowman K P and North G R 2004 Equatorial waves including the Madden-Julian oscillation in TRMM rainfall and OLR data; J. Climate 17 4387–4406.

    Article  Google Scholar 

  • Daubechies I 1990 The wavelet transform time-frequency localization and signal analysis; IEEE Trans. Inform. 36 961–1004.

    Article  Google Scholar 

  • Emery W J and Thomson R E 2001 Data Analysis Methods in Physical Oceanography; Springer, pp. 514–549.

  • Gill A E 1982 Atmosphere — Ocean Dynamics (San Diego: Academic Press) 662 pp.

    Google Scholar 

  • Gu G and Zhang C 2001 A spectrum analysis of synoptic scale disturbances in the ITCZ; J. Climate 14 2725–2739.

    Article  Google Scholar 

  • Hendon H H and Wheeler M 2008 Some space-time spectral analyses of tropical convection and planetary-scale waves; J. Atmos. Sci. 65 2936–2948.

    Article  Google Scholar 

  • Kaiser G 1994 A Friendly Guide to Wavelets, Birkhäuser, 300 pp.

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R and Joseph D 1996 The NCEP/NCAR 40-year Reanalysis project; Bull. Amer. Meteor. Soc. 77 437–471.

    Article  Google Scholar 

  • Kailash S V and Narasimha R 2000 Quasi-cycles in monsoon rainfall by wavelet analysis; Curr. Sci. 78 592–595.

    Google Scholar 

  • Kasahara A 1980 Effect of zonal flows on the free oscillations of a barotropic atmosphere; J. Atmos. Sci. 37 917–929.

    Article  Google Scholar 

  • Kiranmayi L and Bhat G S 2008 Quasi-periodic, global oscillations in sea level pressure on intraseasonal time scales; Clim. Dyn. 31 doi:10.1007/s00382-008-0413-7.

  • Lau W K M and Waliser D E 2005 Intraseasonal Variability in the Atmosphere-Ocean Climate System (Chichester, UK: Springer) 436 pp.

    Google Scholar 

  • Lawrence D M and Webster P J 2001 Interannual variations of the intraseasonal oscillation in the south Asian summer monsoon region; J. Climate 14 2910–2922.

    Article  Google Scholar 

  • Liebmann B and Smith C A 1996 Description of a complete (interpolated) OLR dataset; Bull. Amer. Meteor. Soc. 77 1275–1277.

    Google Scholar 

  • Madden R A 1978 Further evidence of traveling planetary waves; J. Atmos. Sci. 35 1605–1618.

    Article  Google Scholar 

  • Madden R A and Julian P R 1971 Description of a 40–50 day oscillation in the zonal wind in the tropical Pacific; J. Atmos. Sci. 29 1109–1123.

    Article  Google Scholar 

  • Masunaga H 2007 Seasonality and regionality of the Madden-Julian oscillation, Kelvin wave, and equatorial Rossby wave; J. Atmos. Sci. 64 4400–4416.

    Article  Google Scholar 

  • Matsuno T 1966 Quasi-geostropic motions in the equatorial area; J. Meteor. Soc. Japan 44 25–43.

    Google Scholar 

  • Rao R M and Bopardikar A S 1998 Wavelet transforms: Introduction to theory and applications; Addison-Wesley.

  • Roundy P E and Frank W M 2004 A climatology of waves in the equatorial region; J. Atmos. Sci. 61 2105–2132.

    Article  Google Scholar 

  • Shanker A P and Nanjundiah R S 2003 Morlet wavelet analysis of tropical convection over space and time: Study of poleward propagation of intertropical convergence zone (ITCZ); Geophys. Res. Lett. 31 doi:10.1029/2003GL018150.

    Google Scholar 

  • Slingo J M, Sperber K R, Boyle J S, Ceron J P, Dix M, Dugas B, Ebisuzaki W, Fyfe J, Gregory D, Gueremy J F, Hack J, Harzallah A, Inness P, Kitoh A, Lau W K M, McAvaney B, Madden R, Matthews A, Palmer T N, Park C K, Randall D and Renno N 1996 Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject; Clim. Dyn. 12 325–357.

    Article  Google Scholar 

  • Teng H and Wang B 2003 Interannual Variations of the Boreal Summer Intraseasonal Oscillation in the Asian-Pacific Region; J. Climate 16 3572–3584.

    Article  Google Scholar 

  • Torrence C and Compo G P 1998 A practical guide to wavelet analysis; Bull. Amer. Meteor. Soc. 79 61–78.

    Article  Google Scholar 

  • Uppala S M, Kallberg P W, Simmons A J, Andrae U, Da Costa Bechtold V, Fiorino M, Gibson J K, Haseler J, Hernandez A, Kelly G A, Li X, Onogi K, Saarinen S, Sokka N, Allan R P, Andersson E, Arpe K, Balmaseda M A, Beljaars A C M, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins B J, Isaksen L, Janssen P A E M, Jenne R, Mcnally A P, Mahfouf J F, Morcrette J J, Rayner N A, Saunders R W, Simon P, Sterl A, Trenberth K E, Untch A, Vasiljevic D, Viterbo P, Woollen J 2005 The ERA-40 re-analysis; Quart. J. Roy. Meteor. Soc. 131 2961–3012.

    Article  Google Scholar 

  • Wallace J M and Kousky V E 1968 Observational evidence of Kelvin waves in the tropical stratosphere; J. Atmos. Sci. 25 280–292.

    Article  Google Scholar 

  • Wang B 2005 Theory (Intraseasonal Variability in the Atmosphere-Ocean Climate System), (eds) Lau W K M and Waliser D E (Chichester, UK: Springer) pp. 307–317.

    Chapter  Google Scholar 

  • Wheeler M C 2002 Tropical meteorology: Equatorial waves. (Encyclopedia of Atmospheric Sciences), (eds) Holton J, Curry J and Pyle J, Academic Press, 2313–2325.

  • Wheeler M and Kiladis G N 1999 Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain; J. Atmos. Sci. 56 374–399.

    Article  Google Scholar 

  • Wheeler M and Hendon H H 2004 An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction; Mon. Wea. Rev. 132 1917–1932.

    Article  Google Scholar 

  • Wheeler M, Kiladis G N and Webster P J 2000 Large scale dynamical fields associated with convectively coupled equatorial waves; J. Atmos. Sci. 57 613–640.

    Article  Google Scholar 

  • Wong M L M 2009 Wavelet analysis of the convectively coupled equatorial waves in the wavenumber-frequency domain; J. Atmos. Sci. 66 209–212.

    Article  Google Scholar 

  • Yanai M and Maruyama T 1966 Stratospheric wave disturbances propagating over the equatorial Pacific; J. Meteor. Soc. Japan. 44 291–294.

    Google Scholar 

  • Zhang C 2005 Madden-Julian oscillations; Rev. Geophys. 43 1–36.

    Google Scholar 

  • Zhang C and Dong M 2004 Seasonality of Madden Julian Oscillation; J. Climate 17 3169–3180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bhat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiranmayi, L., Bhat, G.S. Equatorial modes observed in atmospheric variables. J Earth Syst Sci 118, 181–192 (2009). https://doi.org/10.1007/s12040-009-0015-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-009-0015-8

Keywords

Navigation