Skip to main content

Part of the book series: Springer Praxis Books ((ENVIRONSCI))

Abstract

In the last two decades, many studies have been devoted to developing a theoretical understanding of the tropical intraseasonal oscillation (TISO) in order to improve the models and their predictions of these disturbances. Progress in modeling and predicting the ISO will only happen if the mechanisms underlying its complex interactions and fundamental dynamics are more fully understood. Significant progress in theoretical understanding has been achieved, although some aspects of the theories remain disputable and incomplete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10.9 References

  • Anderson, J. R. (1987) Response of the tropical atmosphere to low-frequency thermal forcing. J. Atmos. Sci., 44, 676–686.

    Article  Google Scholar 

  • Anderson, J. R. and D. E. Stevens (1987) Presence of linear wavelike modes in a zonally symmetric model of the tropical atmosphere. J. Atmos. Sci., 44, 2115–2117.

    Article  Google Scholar 

  • Annamalai, H. and J. M. Slingo (2001) Active/break cycles: Diagnosis of the intraseasonal variability of the Asian Summer Monsoon. Clim. Dyn., 18, 85–102.

    Article  Google Scholar 

  • Arakawa, A. and W. H. Schubert (1974) Interaction of a cumulus cloud ensemble with the large-scale environment. Part I: J. Atmos. Sci., 31, 674–701.

    Article  Google Scholar 

  • Betts, A. K. (1986) New convective adjustment scheme. Part 1: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.

    Google Scholar 

  • Betts, A. K. and M. J. Miller (1986) New convective adjustment scheme. Part 2: Single column tests using GATE wave, BOMEX, ATEX, and Arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709.

    Google Scholar 

  • Blackadar, A. K. and H. Tenneker (1968) Asymptotic similarity in neutral barotropic planetary boundary layer. J. Atmos. Sci., 225, 1015–1020.

    Article  Google Scholar 

  • Blade, I. and D. L. Hartmann (1993) Tropical intraseasonal oscillations in a simple nonlinear model. J. Atmos. Sci., 50, 2922–2939.

    Article  Google Scholar 

  • Brown, R. G. and C. S. Bretherton (1995) Tropical wave instabilities: convective interaction with dynamics using the Emanuel convective parameterization. J. Atmos. Sci., 52, 67–82.

    Article  Google Scholar 

  • Chang, C.-P. (1977) Some theoretical problems of the planetary-scale monsoons. Pure and Appl. Geophys., 115, 1089–1109.

    Article  Google Scholar 

  • Chang, C.-P. and H. Lim (1988) Kelvin wave-CISK: A possible mechanism for the 30–50 day oscillations. J. Atmos. Sci., 45, 1709–1720.

    Article  Google Scholar 

  • Chao, W. C. (1987) On the origin of the tropical intraseasonal oscillation. J. Atmos. Sci., 44, 1940–1949.

    Article  Google Scholar 

  • Chao, W. C. (1995) A critique of wave-CISK as an explanation for the 40–50 day tropical intraseasonal oscillation. J. Meteor. Soc. Jap., 73, 677–684.

    Google Scholar 

  • Chao, W. C. and L. Deng (1998) Tropical intraseasonal oscillation, super cloud clusters, and cumulus convection schemes. Part II: 3D aquaplanet simulations. J. Atmos. Sci., 55, 690–709.

    Article  Google Scholar 

  • Charney, J. G. and A. Eliassen (1964) On the Growth of the Hurricane Depression. J. Atmos. Sci., 21, 68–75.

    Article  Google Scholar 

  • Chen, T.-C, and M. Murakami (1988) The 30–50 day variation of convective activity over the western Pacific Ocean with the emphasis on the northwestern region. Mon. Wea. Rev., 116, 892–906.

    Article  Google Scholar 

  • Chen, S. S., R. A. Houze Jr., and B. E. Mapes (1996) Multiscale variability of deep convection in relation to large-scale circulation during TOGA COARE. J. Atmos. Sci., 53, 1380–1409.

    Article  Google Scholar 

  • Cho, H.-R. and D. Pendlebury (1997) Wave CISK of equatorial waves and the vertical distribution of cumulus heating. J. Atmos. Sci., 54, 2429–2440.

    Article  Google Scholar 

  • Chou, S.-H., C.-L. Shie, R. M. Atlas, and J. Ardizzone (1995) The December 1992 westerly wind burst and its impact on evaporation determined from SSMI data. Proc. Int. Scientific Conf. on the Tropical Ocean Global Atmosphere Program, Melbourne, Australia, World Meteor. Org., 489–493.

    Google Scholar 

  • Cubukcu, N. and T. N. Krishnamurti (2002) Low-frequency controls on the thresholds of sea surface temperature over the western tropical Pacific. J. Climate, 15, 1626–1642.

    Article  Google Scholar 

  • Davey, M. K. and A. E. Gill (1987) Experiments on tropical circulation with a simple moist model. Quart. J. Roy. Meteor. Soc., 113, 1237–1269.

    Article  Google Scholar 

  • Deser, C. (1993) Diagnosis of the surface momentum balance over the tropical Pacific Ocean. J. Climate, 6, 64–74.

    Article  Google Scholar 

  • Drbohlav, H.-K. L. and B. Wang (2004) Mechanism of the northward propagating intraseasonal oscillation in the south Asian monsoon region: Results from a zonally averaged model. J. Climate, in press.

    Google Scholar 

  • Dunkerton, T. J. and F. X. Crum (1991) Scale selection and propagation of wave-CISK with conditional heating. J. Meteor. Soc. Jap., 69, 449–458.

    Google Scholar 

  • Eliassen, A. (1971) On the Ekman layer in a circular vortex. J. Meteor. Soc. Jap., 49(special issue), 784–789.

    Google Scholar 

  • Emanuel, K. A. (1987) Air-sea interaction model of intraseasonal oscillations in the Tropics. J. Atmos. Sci., 44, 2324–2340.

    Article  Google Scholar 

  • Emanuel, K. A. (1993) The effect of convective response time on WISHE modes. J. Atmos. Sci., 50, 1763–1776.

    Article  Google Scholar 

  • Fasullo, J., and P. J. Webster (1995) Aspects of ocean/atmosphere interaction during westerly wind bursts. Proc. Int. Scientific Conf. on the Tropical Ocean Global Atmosphere Program, Melbourne, Australia, World Meteor. Org., 39–43.

    Google Scholar 

  • Ferranti, L., J. M. Slingo, T. N. Palmer, and B. J. Hoskins (1997) Relations between inter-annual and intraseasonal monsoon variability as diagnosed from AMIP integration. Quart. J. Roy. Meteor. Soc., 123, 1323–1357.

    Article  Google Scholar 

  • Flatau, M., P. J. Flatau, P. Phoebus, and P. P. Niiler (1997) The feedback between equatorial convection and local radiative and evaporative processes: The implication for intra-seasonal oscillations. J. Atmos. Sci., 54, 2373–2386.

    Article  Google Scholar 

  • Fu, X. and B. Wang (2004) Differences of boreal summer intraseasonal oscillations simulated in an atmosphere-ocean coupled model and an atmosphere-only model. J. Climate, 17, 1263–1271.

    Article  Google Scholar 

  • Fu, X., B. Wang, T. Li, and J. P. McCreary (2003) Coupling between northward propagating, intraseasonal oscillations and sea-surface temperature in the Indian Ocean. J. Atmos. Sci., 60, 1733–1753.

    Article  Google Scholar 

  • Gill, A. E. (1980) Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Goswami, B. N. and J. Shukla (1984) Quasi-periodic oscillations in a symmetric general circulation model. J. Atmos. Sci., 41, 20–37.

    Article  Google Scholar 

  • Goswami, P. and V. Mathew (1994) A mechanism of scale selection in tropical circulation at observed intraseasonal frequencies. J. Atmos. Sci., 51, 3155–3166.

    Article  Google Scholar 

  • Grabowski, W. W. (2003) MJO-like coherent structures: Sensitivity simulations using the Cloud-Resolving Convection Parameterization (CRCP). J. Atmos. Sci., 60, 847–864.

    Article  Google Scholar 

  • Gualdi, S., A. Navarra, and M. Ficher (1999) The tropical intraseasonal oscillation in a coupled ocean-atmosphere general circulation model. Geophys. Res. Lett., 26, 2973–2976.

    Article  Google Scholar 

  • Hayashi, Y. (1970) A theory of large scale equatorial waves generated by condensation heat and accelerating the zonal wind. J. Meteor. Soc. Jap., 48, 140–160.

    Google Scholar 

  • Hayashi, Y. and S. Miyahara (1987) Three-dimensional linear response model of the tropical intraseasonal oscillation. J. Meteor. Soc. Jap., 65, 843–852.

    Google Scholar 

  • Hayashi, Y. Y. and A. Sumi (1986) 30–40-day oscillations simulated in an “aqua planet” model. J. Meteor. Soc. Jap., 64, 451–467.

    Google Scholar 

  • Hendon, H. H. (1988) Simple model of the 40–50 day oscillation. J. Atmos. Sci., 45, 569–584.

    Article  Google Scholar 

  • Hendon, H. H. (2000) Impact of air-sea coupling on the Madden-Julian Oscillation in a general circulation model. J. Atmos. Sci., 57, 3939–3952.

    Article  Google Scholar 

  • Hendon, H. H. and M. L. Salby (1994) The life cycle of the Madden-Julian Oscillation. J. Atmos. Sci., 51, 2225–2237.

    Article  Google Scholar 

  • Hirst, A. C. and K.-M. Lau (1990) Intraseasonal and inter-annual oscillations in coupled ocean-atmosphere models. J. Climate, 3, 713–725.

    Article  Google Scholar 

  • Hoskins, B. J. and M. J. Rodwell (1995) A model of the Asian summer monsoon. Part I: The global scale. J. Atmos. Sci., 52, 1329–1340.

    Article  Google Scholar 

  • Houze, R. A., S. S. Chen, D. K. Kingsmill, Y. Serra, and S. E. Yuter (2000) Convection over the Pacific warm pool in relation to the atmospheric Kelvin-Rossby wave. J. Atmos. Sci., 57, 3058–3089.

    Article  Google Scholar 

  • Hsu, H.-H. and C. H. Weng (2001) Northwestward propagation of the intraseasonal oscillation in the western north Pacific during the Boreal Summer: Structure and mechanism. J. Climate, 14, 3834–3850.

    Article  Google Scholar 

  • Hsu, H.-H., B. J. Hoskins, and F.-F. Jin (1990) The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47, 823–839.

    Article  Google Scholar 

  • Hu, Q. and D. A. Randall (1994) Low-frequency oscillations in radiative-convective systems. J. Atmos. Sci., 51, 1089–1099.

    Article  Google Scholar 

  • Hu, Q. and D. A. Randall (1995) Low-frequency oscillations in radiative-convective systems. Part II: An idealized model. J. Atmos. Sci., 52, 478–490.

    Article  Google Scholar 

  • Inness, P. M. and J. M. Slingo (2003) Simulation of the Madden-Julian Oscillation in a coupled general circulation model. Part I: Comparison with observations and an atmospheric only GCM. J. Climate, 16, 345–364.

    Article  Google Scholar 

  • Inness, P. M., J. M. Slingo, E. Guilyardi, and C. Jeffrey (2003) Simulation of the Madden-Julian Oscillation in a coupled general circulation model. Part II: The role of the basic state. J. Climate, 16, 365–382.

    Article  Google Scholar 

  • Itoh, H. (1989) The mechanism for the scale selection of tropical intraseasonal oscillations. Part I: Selection of wavenumber 1 and the three-scale structure. J. Atmos. Sci., 46, 1779–1798.

    Article  Google Scholar 

  • Jiang, X., T. Li, and B. Wang (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, in press.

    Google Scholar 

  • Johnson, R., T. M. Rickenbarch, S. A. Rutledge, P. E. Ciesielski and W. H. Schubert (1999) Trimodal characteristics of tropical convection. J. Climate, 12, 2397–2417.

    Article  Google Scholar 

  • Jones, C. and B. C. Weare (1996) The role of low-level moisture convergence and ocean latent heat fluxes in the Madden-Julian Oscillation: An observational analysis using ISCCP data and ECMWF analyses. J. Climate, 9, 3086–3104.

    Article  Google Scholar 

  • Jones, C., D. E. Waliser and C. Gautier (1998) The influence of the Madden-Julian Oscillation on ocean surface heat fluxes and sea surface temperature. J. Climate, 11, 1057–1072.

    Article  Google Scholar 

  • Kemball-Cook, S. and B. Wang (2001) Equatorial waves and air-sea interaction in the Boreal summer intraseasonal oscillation. J. Climate, 14, 2923–2942.

    Article  Google Scholar 

  • Kemball-Cook, S., B. Wang, and X. Fu (2002) Simulation of the intraseasonal oscillation in ECHAM4 Model: The impact of coupling with an ocean model. J. Atmos. Sci., 59, 1433–1453.

    Article  Google Scholar 

  • Kemball-Cook, S. and B. C. Weare (2001) The onset of convection in the Madden-Julian Oscillation. J. Climate, 14, 780–793.

    Article  Google Scholar 

  • Kikuchi, K. and Y. N. Takayabu (2004) Equatorial circumnavigation of moisture signal associated with the Madden-Julian Oscillation (MJO) during the boreal winter. J. Meteor. Soc. Jap., in press.

    Google Scholar 

  • Knutson, T. R., K. M. Weickmann, and J. E. Kutzbach (1986) Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during northern hemisphere summer. Mon. Wea. Rev., 114, 605–623.

    Article  Google Scholar 

  • Krishnamurti, T. N. and D. Subrahmanyam (1982) The 30–50 day mode at 850mb during MONEX. J. Atmos. Sci., 39, 2088–2095.

    Article  Google Scholar 

  • Krishnamurti, T. N., D. K. Oosterhof, and A. V. Mehta (1988) Air-sea interaction on the time scale of 30 to 50 days. J. Atmos. Sci., 45, 1304–1322.

    Article  Google Scholar 

  • Krishnamurti, T. N., P. K. Jayakumar, J. Sheng, N. Surgi and A. Kumar (1985) Divergent circulations on the 30 to 50 day time scale. J. Atmos. Sci., 42, 364–375.

    Article  Google Scholar 

  • Krishnamurti, T. N., D. R. Chakraborty, N. Cubukcu, L. Stefanova, and T. S. V. Kumar (2003) A mechanism of the Madden-Julian Oscillation based on interactions in the frequency domain. Quart. J. Roy. Meteor. Soc., 129, 2559–2590.

    Article  Google Scholar 

  • Krishnan, R., C. Zhang, and M. Sugi (2000) Dynamics of breaks in the Indian summer monsoon. J. Atmos. Sci., 57, 1354–1372.

    Article  Google Scholar 

  • Kuma, K.-I. (1994) The Madden-Julian Oscillation and tropical disturbances in an aqua-planet version of JMA global model with T63 and T159 resolution. J. Meteor. Soc. Jap., 72, 147–172.

    Google Scholar 

  • Kuo, H. L. (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sci., 31, 1232–1240.

    Article  Google Scholar 

  • Lau, K. H. and N.-C. Lau (1990) Observed structure and propagation characteristics of tropical summertime synoptic scale disturbances. Mon. Wea. Rev., 118, 1888–1913.

    Article  Google Scholar 

  • Lau, K. M. and P. H. Chan (1985) Aspects of the 40–50 day oscillation during northern winter as inferred from OLR. Mon. Wea. Rev., 113, 1889–1909.

    Article  Google Scholar 

  • Lau, K. M. and P. H. Chan (1986) Aspects of the 40–50 day oscillation during northern summer as inferred from OLR. Mon. Wea. Rev., 114, 1354–1367.

    Article  Google Scholar 

  • Lau, K. M. and L. Peng (1987) Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: Basic theory. J. Atmos. Sci., 44, 950–972.

    Article  Google Scholar 

  • Lau, K. M. and L. Peng (1990) Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: Monsoon dynamics. J. Atmos. Sci., 47, 1443–1462.

    Article  Google Scholar 

  • Lau, K. M., and C. H. Sui (1997) Mechanisms of short-term sea surface temperature regulation: Observations during TOGA-COARE. J. Climate, 10, 465–472.

    Article  Google Scholar 

  • Lau, K. M., L. Peng, L. C. H. Sui., and T. Nakazawa (1989) Dynamics of super cloud clusters, westerly wind bursts, 30–60 day oscillations and ENSO: A unified view. J. Meteor. Soc. Jap., 67, 205–219.

    Google Scholar 

  • Lau, K. M. and H.-T. Wu (2003) Warm rain processes over the tropical ocean and climate implications. Geophys. Res. Lett., 30(24), 2290, doi:10.1029/2003GL018567.

    Article  Google Scholar 

  • Lau, N.-C. and K. M. Lau (1986) The structure and propagation of intraseasonal oscillation appearing in a GFDL general circulation model. J. Atmos. Sci., 43, 2023–2047.

    Article  Google Scholar 

  • Lau, N.-C., I. M. Held and J. D. Neelin (1988) The Madden-Julian Oscillation in an idealized GCM model. J. Atmos. Sci., 45, 3810–3832.

    Article  Google Scholar 

  • Lawrence, D. M. and P. J. Webster (2002) The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 1593–1606.

    Article  Google Scholar 

  • Lee, M. I., I. S. Kang, and B. E. Mapes (2003) Impacts of cumulus convecton parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability. J. Meteor. Soc. Jap., 81, 963–992.

    Article  Google Scholar 

  • Lee, M. J., I. S. Kang., J. K. Kim, and B. E. Mapes (2001) Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J. Geophys. Res., 106, 14219–14233.

    Article  Google Scholar 

  • Li, T. and B. Wang (1994) A thermodynamic equilibrium climate model for monthly mean surface winds and precipitation over the tropical Pacific. J. Atmos. Sci., 51, 1372–1385.

    Article  Google Scholar 

  • Li, X. and H.-R. Cho (1997) Development and propagation of equatorial waves. Adv. Atmos. Sci. China, 14, 323–338.

    Google Scholar 

  • Lim, H., T. K. Lim, and C.-P Chang (1990) Reexamination of Wave-CISK theory: Existence and properties of nonlinear Wave-CISK modes. J. Atmos. Sci., 47, 3078–3091.

    Article  Google Scholar 

  • Lin, J. and B. E. Mapes (2004) Radiation budget of the tropical intraseasonal oscillation. J. Atmos. Sci., 61, 2050–2062.

    Article  Google Scholar 

  • Lin, J., B. E. Mapes, M. Zhang, and M. Newman (2004) Stratiform precipitation, vertical heating profiles, and the Madden-Julian Oscillation. J. Atmos. Sci., 61, 296–309.

    Article  Google Scholar 

  • Lin, J. W.-B., J. Neelin, and N. Zeng (2000) Maintenance of tropical intraseasonal variability: Impact of evaporation-wind feedback and midlatitude storms. J. Atmos. Sci., 57, 2793–2823.

    Article  Google Scholar 

  • Lin, X. and R. H. Johnson (1996) Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA-COARE. J. Atmos. Sci., 53, 695–715.

    Article  Google Scholar 

  • Lindzen, R. S. (1974) Wave-CISK and tropical spectra. J. Atmos. Sci., 31, 1447–1449.

    Article  Google Scholar 

  • Madden, R. A. (1986) Seasonal variations of the 40–50 day oscillation in the tropics. J. Atmos. Sci., 43, 3138–3158.

    Article  Google Scholar 

  • Madden, R. A. and P. R. Julian (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708.

    Article  Google Scholar 

  • Madden, R. A. and P. R. Julian (1972) Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123.

    Article  Google Scholar 

  • Madden, R. A. and P. R. Julian (1994) Observations of the tropical 40–50 day Oscillation-review. Mon. Wea. Rev., 122, 814–837.

    Article  Google Scholar 

  • Majda, A. J. and R. Klein (2003) Systematic Multiscale Models for the Tropics. J. Atmos. Sci., 60, 393–408.

    Article  Google Scholar 

  • Majda, A. J. and J. A. Biello (2004) A multiscale model for tropical intraseasonal oscillations. Proc. Nat. Acad. Sci., 101, 4736–4741.

    Article  Google Scholar 

  • Maloney, E. D. (2002) An intraseasonal oscillation composite life cycle in the NCAR CCM3.6 with modified convection. J. Climate, 15, 964–982.

    Article  Google Scholar 

  • Maloney, E. D. and D. L. Hartmann (1998) Frictional moisture convergence in a composite life cycle of the Madden-Julian Oscillation. J. Climate, 11, 2387–2403.

    Article  Google Scholar 

  • Maloney, E. D. and D. L. Hartmann (2001) The sensitivity of intraseasonal variability in the NCAR CCM3 to changes in convective parameterization. J. Climate, 14, 2015–2034.

    Article  Google Scholar 

  • Manabe, S., J. Smagorinsky, and R. F. Strickler (1965) Simulated climatology of a general circulation model with a hydrologic cycle. Mon. Wea. Rev., 93, 769–798.

    Article  Google Scholar 

  • Mapes, B. E. (2000) Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 1515–1535.

    Article  Google Scholar 

  • Matsuno, T. (1966) Quasigeostrophic motions in the equatorial area. J. Meteor. Soc. Jap., 44, 25–43.

    Google Scholar 

  • Matthews, A. J. (2000) Propagation mechanisms for the Madden-Julian Oscillation. Quart. J. Roy. Meteor. Soc., 126, 2637–2651.

    Article  Google Scholar 

  • Matthews, A. J., J. M. Slingo, B. J. Hoskins, and P. M. Inness (1999) Fast and slow Kelvin waves in the Madden-Julian Oscillation of a GCM. Quart. J. Roy. Meteor. Soc., 125, 1473–1498.

    Article  Google Scholar 

  • Mehta, A. V. and E. A. Smith (1997) Variability of radiative cooling during the Asian summer monsoon and its influence on intraseasonal waves. J. Atmos. Sci., 54, 941–966.

    Article  Google Scholar 

  • Moncrieff, M. W., and C. Liu (1999) Convective initiation by density currents: Role of convergence, shear and dynamicall organization. Mon. Wea. Rev., 127, 2455–2464.

    Article  Google Scholar 

  • Moskowitz, B. M. and C. S. Bretherton (2000) An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci., 57, 2188–2206.

    Article  Google Scholar 

  • Milliff, R. F. and R. A. Madden (1996) The existence and vertical structure of the fast, eastward-moving disturbances in the equatorial troposphere. J. Atmos. Sci., 53, 586–597.

    Article  Google Scholar 

  • Murakami, T. (1980) Empirical orthogonal function analysis of satellite observed outgoing longwave radiation during summer. Mon. Wea. Rev., 108, 205–222.

    Article  Google Scholar 

  • Murakami, T., B. Wang, and S. W. Lyons (1992) Summer monsoons over the Bay of Bengal and the eastern North Pacific. J. Meteor. Soc. Jap., 70, 191–210.

    Google Scholar 

  • Murphree, T. and H. van den Dool (1988) Calculating winds from time mean sea level pressure fields. J. Atm. Sci., 45, 3269–3281.

    Article  Google Scholar 

  • Nakazawa, T. (1988) Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Jap., 66, 823–839.

    Google Scholar 

  • Neelin, J. D. (1990) A hybrid coupled general circulation model for El Niño studies. J. Atmos. Sci., 47, 674–693.

    Article  Google Scholar 

  • Neelin, J. D. and J.-Y. Yu (1994) Modes of tropical variability under convective adjustment and the Madden-Julian Oscillation. Part I: Analytical theory. J. Atmos. Sci., 51, 1876–1894.

    Article  Google Scholar 

  • Neelin, J. D., I. M. Held, and K. H. Cook (1987) Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44, 2341–2348.

    Article  Google Scholar 

  • Nitta, T. (1987) Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer monsoon. J. Meteor. Soc. Jap., 65, 373–390.

    Google Scholar 

  • Ohuchi, K. and M. Yamasaki (1997) Kelvin wave-CISK controlled by surface friction: A possible mechanism of super cloud cluster. J. Meteor. Soc. Jap., 75, 497–511.

    Google Scholar 

  • Ooyama, K. (1964) A dynamic model for the study of tropical cyclone development. Geofits. Int. (Mexico), 4, 187–198.

    Google Scholar 

  • Pedlosky, J. (1979) Geophysical Fluid Dynamics. Springer Verlag, New York, 710 pp.

    Google Scholar 

  • Peng, L., C.-H. Sui, K.-M. Lau, and W. K. Tao (2001) Genesis and evolution of hierarchical cloud clusters in a two dimentional cumulus resolving model. J. Atmos. Sci., 58, 877–895.

    Article  Google Scholar 

  • Philander, S. G. H., T. Yamagata, and R. C. Pacanowski (1984) Unstable air-sea interactions in the Tropics. J. Atmos. Sci., 41, 604–613.

    Article  Google Scholar 

  • Randall, D. A., Harshvardhan, D. A. Dazlich, and T. G. Corsetti (1989) Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46(13), 1943–1970.

    Article  Google Scholar 

  • Raymond, D. J. (2001) A new model of the Madden-Julian Oscillation. J. Atmos. Sci., 58, 2807–2819.

    Article  Google Scholar 

  • Rui, H. and B. Wang (1990) Development characteristics and dynamic structure of tropical intraseasonal convection anomalies. J. Atmos. Sci., 47, 357–379.

    Article  Google Scholar 

  • Salby, M. L., R. R. Garcia, and H. H. Hendon (1994) Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 2344–2367.

    Article  Google Scholar 

  • Sengupta, D., B. N. Goswami, and R. Senan (2001) Coherent intraseasonal oscillations of ocean and atmosphere during the Asian summer monsoon. Geophys. Res. Lett., 28, 4127–4130.

    Article  Google Scholar 

  • Shinoda, T. and H. H. Hendon (1998) Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian Ocean. J. Climate, 11, 2668–2685.

    Article  Google Scholar 

  • Shinoda, T., H. H. Hendon, and J. Glick (1998) Intraseasonal variability of surface fluxes and sea surface temperature in the tropical Western Pacific and Indian Oceans. J. Climate, 11, 1685–1702.

    Article  Google Scholar 

  • Short, D. and K. Nakamura (2000) TRMM radar observations of shallow precipitation over tropical oceans. J. Climate, 13, 4107–4124.

    Article  Google Scholar 

  • Sikka, D. R. and S. Gadgil (1980) On the maximum cloud zone and the ITCZ over Indian longitudes during the southwest monsoon. Mon. Wea. Rev., 108, 1840–1853.

    Article  Google Scholar 

  • Slingo, A. and J. M. Slingo (1988) Response of a general circulation model to cloud long-wave radiative forcing. Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 1027–1062.

    Article  Google Scholar 

  • Slingo, A., J. M. Boyle, J. S. Ceron, J.-P. Dix, M. Dugas, B. Ebisuzaki, W. Fyfe, J. Gregory, D. Gueremy, and J.-F. Hack (1996) Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Clim. Dyn., 12, 325–357.

    Article  Google Scholar 

  • Slingo, A., P. Inness, R. Neale, S. Woolnough, and G.-Y. Yang (2003) Scale interaction on diurnal to seasonal timescales and their relevance to model systematic errors. Geophys. Ann., 46, 139–155.

    Google Scholar 

  • Slingo, A., and R. A. Madden (1991) Characteristics of the tropical intraseasonal oscillation in the NCAR community climate model. Quart. J. Roy. Meteor. Soc., 117, 1129–1169.

    Article  Google Scholar 

  • Sobel, A. H. and H. Gildor (2003) A simple time-dependent model of SST hot spas. J. Climate, 16, 3978–3992.

    Article  Google Scholar 

  • Sperber, K. R. (2003) Propagation and vertical structure of the Madden-Julian Oscillation. Mon. Wea. Rev., 131, 3018–3037.

    Article  Google Scholar 

  • Sui, C.-H. and K.-M. Lau (1989) Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part 2: Structure and propagation of mobile wave-CISK modes and their modification by lower boundary forcing. J. Atmos. Sci., 46, 37–56.

    Article  Google Scholar 

  • Takahashi, M. (1987) Theory of the slow phase speed of the intraseasonal oscillation using the wave-CISK. J. Meteor. Soc. Jap., 65, 43–49.

    Google Scholar 

  • Ting, M. (1994) Maintenance of northern summer stationary waves in a GCM. J. Atmos. Sci., 51, 3286–3308.

    Article  Google Scholar 

  • Tompkins, A. M. (2001) On the relationship between tropical convection and sea surface temperature. J. Atmos. Sci., 58, 529–545.

    Article  Google Scholar 

  • Waliser, D. E., K. M. Lau, and J.-H. Kim (1999) The influence of coupled sea surface temperatures on the Madden-Julian Oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333–358.

    Article  Google Scholar 

  • Waliser, D. E., K. M. Lau, W. Stern, and C. Jones (2003a) Potential predictability of the Madden-Julian Oscillation. Bull. Amer. Meteor. Soc., 84, 33–50.

    Article  Google Scholar 

  • Waliser, D. E., K. Jin, I. S. Kang, W. F. Stern, S. D. Schubert, M. L. Wu, K. M. Lau, M. I. Lee, J. Shukla, V. Krishnamurthy, et al. (2003b) AGCM Simulations of intraseasonal variability associated with the Asian summer monsoon. Clim. Dyn., 21, 423–446.

    Article  Google Scholar 

  • Wang, B. (1988a) Dynamics of tropical low-frequency waves: an analysis of the moist Kelvin wave. J. Atmos. Sci., 45, 2051–2065.

    Article  Google Scholar 

  • Wang, B. (1988b) Comments on “An air-sea interaction model of intraseasonal oscillation in the tropics”. J. Atmos. Sci., 45, 3521–3525.

    Article  Google Scholar 

  • Wang, B. and J. K. Chen (1989) On the zonal-scale selection and vertical structure of equatorial intraseasonal waves. Quart. J. Roy. Meteor. Soc., 115, 1301–1323.

    Article  Google Scholar 

  • Wang, B. and T. Li (1993) A simple tropical atmosphere model of relevance to short-term climate variations. J. Atmos. Sci., 50, 260–284.

    Article  Google Scholar 

  • Wang, B. and T. Li (1994) Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51, 1386–1400.

    Article  Google Scholar 

  • Wang, B. and H. Rui (1990a) Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial beta-plane. J. Atmos. Sci., 47, 397–413.

    Article  Google Scholar 

  • Wang, B. and H. Rui (1990b) Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorol. Atmos. Phys., 44, 43–61.

    Article  Google Scholar 

  • Wang, B. and X. Xie (1996) Low-frequency equatorial waves in vertically sheared zonal flow. Part I: Stable waves. J. Atmos. Sci., 53, 449–467.

    Article  Google Scholar 

  • Wang, B and X. Xie (1997) A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 72–86.

    Article  Google Scholar 

  • Wang, B. and X. Xie (1998) Coupled modes of the warm pool climate system. Part I: The role of air-sea interaction in maintaining Madden-Julian Oscillation. J. Atmos. Sci., 11, 2116–2135.

    Google Scholar 

  • Wang, B. and X. Xu (1997) Northern Hemisphere summer monsoon singularities and climatological intraseasonal oscillation. J. Climate, 10, 1071–1085.

    Article  Google Scholar 

  • Wang, B. and Y. Xue (1992) Behavior of a moist Kelvin wave packet with nonlinear heating. J. Atmos. Sci., 49, 549–559.

    Article  Google Scholar 

  • Wang, B. and Q. Zhang (2002) Pacific-East Asian teleconnection. Part II: How the Philippine Sea anticyclone established during development of El Niño. J. Climate, 15, 3252–3265.

    Article  Google Scholar 

  • Wang, W. and M. E. Schlesinger (1999) The dependence on convective parametrization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J. Climate, 12, 1423–1457.

    Article  Google Scholar 

  • Webster, P. J. (1983) Mechanisms of monsoon low-frequency variability: Surface hydrological effects. J. Atmos. Sci., 40, 2110–2124.

    Article  Google Scholar 

  • Webster, P. J. (1994) The role of hydrological processes in ocean-atmosphere interactions. Rev. Geophys., 32, 427–476.

    Article  Google Scholar 

  • Weickmann, K. M. (1983) Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111, 1838–1858.

    Article  Google Scholar 

  • Weller, R. A. and S. P. Anderson (1996) Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during the TOGA Coupled Ocean-Atmosphere Response Experiment. J. Climate, 9, 1959–1990.

    Article  Google Scholar 

  • Wheeler et al. (2000)

    Google Scholar 

  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins (2000) The relationship between convection and sea surface temperature on intraseasonal timescales. J. Climate, 13, 2086–2104.

    Article  Google Scholar 

  • Woolnough, S. J., J. M. Slingo, and B. J. Hoskins (2001) The organization of tropical convection by intraseasonal sea surface temperature anomalies. Quart. J. Roy. Meteor. Soc., 127, 887–907.

    Article  Google Scholar 

  • Wu, M. L. C., S. Schubert, I. S. Kang, and D. E. Waliser (2002) Forced and free intraseasonal variability over the south Asian monsoon region simulated by 10 AGCMs. J. Climate, 15, 2862–2880.

    Article  Google Scholar 

  • Wu, Z. (2003) A shallow CISK, deep equilibrium mechanism for the interaction between large scale convection and large scale circulations in the tropics. J. Atmos. Sci., 60, 377–392.

    Article  Google Scholar 

  • Xie, S.-P. and A. Kubokawa (1990) On the wave-CISK in the presence of a frictional boundary layer. J. Meteor. Soc. Jap., 68, 651–657.

    Google Scholar 

  • Xie, S.-P., A. Kubokawa, and K. Hanawa (1993) Evaporation-wind feedback and the organizing of tropical convection on the planetary scale. Part II: Nonlinear evolution. J. Atmos. Sci., 50, 3884–3893.

    Article  Google Scholar 

  • Xie, X. and B. Wang (1996) Low-frequency equatorial waves in vertically sheared zonal flows. Part II: unstable waves. J. Atmos. Sci., 53, 3589–3605.

    Article  Google Scholar 

  • Yamagata, T. (1987) Simple moist model relevant to the origin of intraseasonal disturbances in the Tropics. J. Meteor. Soc. Jap., 65, 153–165.

    Google Scholar 

  • Yamagata, T. and Y. Hayashi (1984) Simple diagnostic model for the 30–50 day oscillation in the Tropics. J. Meteor. Soc. Jap., 62, 709–717.

    Google Scholar 

  • Yamasaki, M. (1969) Large-scale disturbances in the conditionally unstable atmosphere in low latitudes. Papers Meteor. Geophys., 20, 289–336.

    Google Scholar 

  • Yano, J.-I. and K. Emanuel (1991) An improved model of the equatorial troposphere and its coupling with the stratosphere. J. Atmos. Sci., 48, 377–389.

    Article  Google Scholar 

  • Yasunari, T. (1979) Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Jap., 57, 227–242.

    Google Scholar 

  • Yasunari, T. (1980) A quasi-stationary appearance of 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Jap., 58, 225–229.

    Google Scholar 

  • Zhang, C. D. (1996) Atmospheric intraseasonal variability at the surface in the tropical western Pacific Ocean. J. Atmos. Sci., 53, 739–758.

    Article  Google Scholar 

  • Zhang, C. D. and S. P. Anderson (2003) Sensitivity of intraseasonal perturbations in SST to the structure of the MJO. J. Atmos. Sci., 60, 2196–2207.

    Article  Google Scholar 

  • Zhang, C. D. and H. H. Hendon (1997) Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci., 54, 741–752.

    Article  Google Scholar 

  • Zhu, B. and B. Wang (1993) The 30–60 day convection seesaw between the tropical Indian and western Pacific Oceans. J. Atmos. Sci., 50, 184–199.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Praxis. Springer Berlin Heidelberg

About this chapter

Cite this chapter

Wang, B. (2005). Theory. In: Intraseasonal Variability in the Atmosphere-Ocean Climate System. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27250-X_10

Download citation

Publish with us

Policies and ethics