Skip to main content
Log in

Cu(II) ionic liquid promoted Simple and Economical Synthesis of 1,4-disubstituted-1,2,3-triazoles with Low Catalyst Loading

  • Rapid Communication
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this work, we have described a very simple and low metal loading copper-based ionic liquid as solvent and catalyst for regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles. The proposed protocol proved its efficiency by showing excellent tolerance to a large array of electronically diverse substrates without the use of the external base, solvent and ligands. Moreover, from cytotoxicity analysis the catalyst was found to be non-toxic in nature due to extremely low loading of copper metal (0.1 mol %).

Graphical abstract

This work describes a very simple and low metal loading catalytic system for efficient synthesis of 1,4-disubstituted-1,2,3-triazoles. The synthesized copper based ionic liquid acted both as solvent and as catalyst. Cytotoxicity analysis indicates that the catalyst is non-toxic in nature due to extremely low loading of copper metal (0.1 mol%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

References

  1. Jaeger D A and Tucker C E 1989 Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt Tetrahedron Lett. 30 1785

  2. McCluskey A, Garner J, Young D J and Caballero S 2000 Tetraallylstannane and Weinreb amides: a simple ‘green’route to N-protected homoallylic alcohols and allyl ketones Tetrahedron Lett. 41 8147

  3. Monteiro A L, Zinn F K, de Souza R F and Dupont J 1997 Asymmetric hydrogenation of 2-arylacrylic acids catalyzed by immobilized Ru-BINAP complex in 1-n-butyl-3-methylimidazolium tetrafluoroborate molten salt Tetrahedron: Asymm. 8 177

  4. Brown R A, Pollet P, McKoon E, Eckert C A, Liotta C L and Jessop P G 2001 Asymmetric hydrogenation and catalyst recycling using ionic liquid and supercritical carbon dioxide J. Am. Chem. Soc. 123 1254

    Article  CAS  Google Scholar 

  5. Gieshoff T N, Welther A, Kessler M T, Prechtl M H and von Wangelin A J 2014 Stereoselective iron-catalyzed alkyne hydrogenation in ionic liquids Chem. Commun. 50 2261

    CAS  Google Scholar 

  6. Seddon K R 1997 Ionic liquids for clean technology J. Chem. Technol. Biotechnol. 68 351

    Article  CAS  Google Scholar 

  7. Welton T 1999 Room-temperature ionic liquids. Solvents for synthesis and catalysis Chem. Rev. 99 2071

  8. Shi D, Pootrakulchote N, Li R, Guo J, Wang Y, Zakeeruddin S M, et al. 2008 New efficiency records for stable dye-sensitized solar cells with low-volatility and ionic liquid electrolytes J. Phys. Chem. C 112 17046

    Article  CAS  Google Scholar 

  9. Tan S S, MacFarlane D R, Upfal J, Edye L A, Doherty W O, Patti A F, et al. 2009 Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid Green Chem. 11 339

    Article  CAS  Google Scholar 

  10. Hayashi S and Hamaguchi H O 2004 Discovery of a magnetic ionic liquid [bmim] FeCl4 Chem. Lett. 33 1590

    Article  CAS  Google Scholar 

  11. Hayashi S, Saha S and Hamaguchi H O 2005 A new class of magnetic fluids: bmim [fecl/sub 4/] and nbmim [fecl/sub 4/] ionic liquids IEEE Trans. Magn. 42 12

    Article  Google Scholar 

  12. Yoshida Y, Fujii J, Muroi K, Otsuka A, Saito G, Takahashi M and Yoko T 2005 Highly conducting ionic liquids based on l-ethyl-3-methylimidazolium cation Synth. Met. 153 421

    Article  CAS  Google Scholar 

  13. Zhang P, Gong Y, Lv Y, Guo Y, Wang Y, Wang C and Li H 2012 Ionic liquids with metal chelate anions Chem. Commun. 48 2334

    Article  CAS  Google Scholar 

  14. Brooks N R, Schaltin S, Van Hecke K, Van Meervelt L, Binnemans K and Fransaer J 2011 Copper (I)-Containing Ionic Liquids for High-Rate Electrodeposition Chem. Eur. J. 17 5054

    Article  CAS  Google Scholar 

  15. Konwar M, Elnagdy H M, Gehlot P S, Khupse N D, Kumar A and Sarma D 2019 Transition metal containing ionic liquid-assisted one-pot synthesis of pyrazoles at room temperature J. Chem. Sci. 131 1

    Article  CAS  Google Scholar 

  16. Vander Hoogerstraete T, Brooks N R, Norberg B, Wouters J, Van Hecke K, Van Meervelt L and Binnemans K 2012 Crystal structures of low-melting ionic transition-metal complexes with N-alkylimidazole ligands CrystEngComm 14 4902

    Article  CAS  Google Scholar 

  17. Schaltin S, Brooks N R, Binnemans K and Fransaer J 2010 Electrodeposition from cationic cuprous organic complexes: ionic liquids for high current density electroplating J. Electrochem. Soc. 158 D21

    Article  Google Scholar 

  18. Schaltin S, Li Y, Brooks N R, Sniekers J, Vankelecom I F, Binnemans K and Fransaer J 2016 Towards an all-copper redox flow battery based on a copper-containing ionic liquid Chem. Commun. 52 414

    Article  CAS  Google Scholar 

  19. Zarca G, Horne W J, Ortiz I, Urtiaga A and Bara J E 2016 Synthesis and gas separation properties of poly (ionic liquid)-ionic liquid composite membranes containing a copper salt J. Membr. Sci. 515 109

    Article  CAS  Google Scholar 

  20. Anderson T M, Ingersoll D, Rose A J, Staiger C L and Leonard J C 2010 Synthesis of an ionic liquid with an iron coordination cation Dalton Trans. 39 8609

    Article  CAS  Google Scholar 

  21. Huang J F, Luo H and Dai S 2006 A new strategy for synthesis of novel classes of room-temperature ionic liquids based on complexation reaction of cations J. Electrochem. Soc. 153 J9

    Article  CAS  Google Scholar 

  22. Pratt III H D, Rose A J, Staiger C L, Ingersoll D and Anderson T M 2011 Synthesis and characterization of ionic liquids containing copper, manganese, or zinc coordination cations Dalton Trans. 40 11396

  23. Sun H, Li X and Sundermeyer J 2005 Aerobic oxidation of phenol to quinone with copper chloride as catalyst in ionic liquid J. Mol. Catal. A-Chem. 240 119

    CAS  Google Scholar 

  24. Sun H, Harms K and Sundermeyer J 2004 Aerobic oxidation of 2, 3, 6-trimethylphenol to trimethyl-1, 4-benzoquinone with copper (II) chloride as catalyst in ionic liquid and structure of the active species J. Am. Chem. Soc. 126 9550

    Article  CAS  Google Scholar 

  25. Stricker M, Linder T, Oelkers B and Sundermeyer J 2010 Cu (I)/(II) based catalytic ionic liquids, their metallo-laminate solid state structures and catalytic activities in oxidative methanol carbonylation Green Chem. 12 1589

  26. Keshavarz M, Karami B, Ahmady A Z, Ghaedi A and Vafaei H 2014 [bmim] BF4/[Cu (Im12)2] CuCl2 as a novel catalytic reaction medium for click cyclization C. R. Chimie. 17 570

    Article  CAS  Google Scholar 

  27. Spangler J E and Davies H M 2013 Catalytic asymmetric synthesis of pyrroloindolines via a rhodium (II)-catalyzed annulation of indoles J. Am. Chem. Soc. 135 6802

    Article  CAS  Google Scholar 

  28. Mangione M I, Spanevello R A and Anzardi M B 2017 Efficient and straightforward click synthesis of structurally related dendritic triazoles RSC Adv. 7 47681

    Article  CAS  Google Scholar 

  29. Zeng L, Lai Z, Zhang C, Xie H and Cui S 2020 Directing-group-enabled cycloaddition of azides and alkynes toward functionalized triazoles Org. Lett. 22 2220

    Article  CAS  Google Scholar 

  30. Golas P L and Matyjaszewski K 2010 Marrying click chemistry with polymerization: expanding the scope of polymeric materials Chem. Soc. Rev. 39 1338

    Article  CAS  Google Scholar 

  31. Díaz Díaz D 2015 Click chemistry in materials synthesis: The Beginning Macromol. Symp. 358 10

    Article  Google Scholar 

  32. Campestre C, Locatelli M, Guglielmi P, De Luca E, Bellagamba G, Menta S, et al. 2017 Analysis of imidazoles and triazoles in biological samples after MicroExtraction by packed sorbent J. Enzyme Inhib. Med. Chem. 32 1053

    Article  Google Scholar 

  33. Vasdev R A, Preston D and Crowley J D 2017 Functional metallosupramolecular architectures using 1, 2, 3-triazole ligands: it’s as easy as 1, 2, 3 “click” Dalton Trans. 46 2402

    Article  CAS  Google Scholar 

  34. Lutz J F and Zarafshani Z 2008 Efficient construction of therapeutics, bioconjugates, biomaterials and bioactive surfaces using azide–alkyne “click” chemistry Adv. Drug Deliv. Rev. 60 958

    Article  CAS  Google Scholar 

  35. Ali A A, Gogoi D, Chaliha A K, Buragohain A K, Trivedi P, Saikia P J, et al. 2017 Synthesis and biological evaluation of novel 1, 2, 3-triazole derivatives as anti-tubercular agents Bioorg. Med. Chem. Lett. 27 3698

    Article  Google Scholar 

  36. Garg A, Borah D, Trivedi P, Gogoi D, Chaliha A K, Ali A A, Chetia D, Chaturvedi V and Sarma D 2020 A Simple Work-Up-free, Solvent-free Approach to Novel Amino Acid Linked 1, 4-Disubstituted 1, 2, 3-Triazoles as Potent Antituberculosis Agents ACS Omega 5 29830

  37. Ali A A, Chetia M, Saikia P J and Sarma D 2014 (DHQD)2 PHAL ligand-accelerated Cu-catalyzed azide–alkyne cycloaddition reactions in water at room temperature RSC Adv. 4 64388

  38. Konwar M, Ali A A, Chetia M, Saikia P J and Sarma D 2016 Fehling solution/DIPEA/hydrazine: an alternative catalytic medium for regioselective synthesis of 1, 4-disubstituted-1H-1, 2, 3-triazoles using azide–alkyne cycloaddition reaction Tetrahedron Lett. 57 4473

  39. Ali A A, Chetia M and Sarma D 2016 Urea assisted copper (I)-catalyzed azide–alkyne cycloaddition reactions in water Tetrahedron Lett. 57 1711

  40. Ali A A, Konwar M, Chetia M and Sarma, D 2016 [Bmim] OH mediated Cu-catalyzed azide–alkyne cycloaddition reaction: A potential green route to 1, 4-disubstituted 1, 2, 3-triazoles Tetrahedron Lett. 57 5661

  41. Balderas P F, Munoz O M, Sanfrutos M J, Mateo H F, Flores F G, Asin J A, et al. 2003 Multivalent neoglycoconjugates by regiospecific cycloaddition of alkynes and azides using organic-soluble copper catalysts Org. Lett. 5 1951

    Article  Google Scholar 

  42. Speers A E, Adam G C and Cravatt B F 2003 Activity-based protein profiling in vivo using a copper (i)-catalyzed azide-alkyne [3+ 2] cycloaddition J. Am. Chem. Soc. 125 4686

    Article  CAS  Google Scholar 

  43. Jewetta J C and Bertozzi C R 2010 Cu-free click cycloaddition reactions in chemical biology Chem. Soc. Rev. 39 1272

    Article  Google Scholar 

  44. Huddleston J G, Visser A E, Reichert W M, Willauer H D, Broker G A and Rogers R D 2001 Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation Green Chem. 3 156

    Article  CAS  Google Scholar 

  45. Thawarkar S R, Khupse N D and Kumar A 2017 Kinetic profile and catalytic activity of transition metal-based ionic liquids for reduction of nitroarenes via in situ formation of nanoparticles ChemistrySelect 2 6833

    Article  CAS  Google Scholar 

  46. Duan X, Ma J, Lian J and Zheng W 2014 The art of using ionic liquids in the synthesis of inorganic nanomaterials CrystEngComm 16 2550

    Article  CAS  Google Scholar 

  47. Ni B and Headly A D 2010 Ionic-Liquid-Supported (ILS) catalysts for asymmetric organic synthesis Chem. Eur. J. 16 4426

    Article  CAS  Google Scholar 

  48. Reddy K R, Rajgopal K and Kantam M L 2006 Copper (II)-promoted regioselective synthesis of 1, 4-disubstituted 1, 2, 3-triazoles in water Synlett 6 957

  49. Schindler S 2000 Reactivity of copper (I) complexes towards dioxygen Eur J. Inorg. Chem. 11 2311

    Google Scholar 

  50. Wang T, Chen X, Long X, Liu Z and Yan S 2016 Copper nanoparticles and copper sulphate induced cytotoxicity in hepatocyte primary cultures of Epinephelus coioides PLoS One 11 e0149484

Download references

Acknowledgement

The authors acknowledge the Department of Science and Technology for financial assistance under DST-FIST program and UGC, New Delhi for Special Assistance Programme (UGC-SAP) to the Department of Chemistry, Dibrugarh University. We sincerely thank the Defence Research Laboratory, Tezpur, for the cytotoxicity analysis of the catalyst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Sarma.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2314 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phukan, P., Kulshrestha, A., Kumar, A. et al. Cu(II) ionic liquid promoted Simple and Economical Synthesis of 1,4-disubstituted-1,2,3-triazoles with Low Catalyst Loading. J Chem Sci 133, 131 (2021). https://doi.org/10.1007/s12039-021-01980-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01980-9

Keywords

Navigation