Skip to main content
Log in

Transition metal containing ionic liquid-assisted one-pot synthesis of pyrazoles at room temperature

  • Rapid Communication
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The feasible and one of the green ways to synthesize organic compounds especially pyrazole and its derivatives are systematically presented. The one-pot synthesis of pyrazole was achieved by condensation of various hydrazines and 1,3-diketone derivatives at room temperature using transition metal-based ionic liquids. Herein, the unique combination of Fe(III) with ionic liquid is explored and utilized as an efficient homogeneous catalyst for the synthesis of pyrazole and its derivatives. The homogenous catalyst thus synthesised was re-used up to the fourth cycle (with 90%, 88%, 84%, 78% yields respectively).

Graphic abstract

Pyrazoles are synthesized in the presence of transition metal-based ionic liquids at room temperature. From the green chemistry perspective, ionic liquids are considered as green solvents which have gained remarkable attention because of its non-toxic, non-corrosive and non-flammable nature while the presence of transition metal as a part of counter anion gives it more catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1

References

  1. Blesic M, Lopes J N C, Gomes M F C and Rebelo L P N 2010 Solubility of alkanes, alkanols and their fluorinated counterparts in tetraalkylphosphonium ionic liquids Phys. Chem. Chem. Phys. 12 9685

    Article  CAS  Google Scholar 

  2. Lopes J N C and Padua A A H 2006 Nanostructural organization in ionic liquids J. Phys. Chem. B 110 3330

    Article  Google Scholar 

  3. S Zhang, J Wang, X Lu and Q Zhou (Eds.) 2014 Structures and Interactions of Ionic Liquids (Heidelberg: Springer)

    Google Scholar 

  4. Rogers R D and Seddon K R 2003 Ionic liquids–solvents of the future? Science 302 792

    Article  Google Scholar 

  5. Kunz W and Häckl K 2016 The hype with ionic liquids as solvents Chem. Phys. Lett. 661 6

    CAS  Google Scholar 

  6. Welton T 1999 Room-temperature ionic liquids. Solvents for synthesis and catalysis Chem. Rev. 99 2071

    Article  CAS  Google Scholar 

  7. Weingartner H 2008 Understanding ionic liquids at the molecular level: facts, problems, and controversies Angew. Chem. Int. Ed. 47 654

    Article  Google Scholar 

  8. Wasserschied P and Keim W 2000 Ionic liquids—new “solutions” for transition metal catalysis Angew. Chem. Int. Ed. 39 3772

    Article  Google Scholar 

  9. Diallo A O, Len C, Morgan A B and Marlair G 2012 Revisiting physico-chemical hazards of ionic liquids Sep. Purif. Technol. 97 228

    Article  CAS  Google Scholar 

  10. Diallo A O, Morgan A B, Len C and Marlair G 2013 An innovative experimental approach aiming to understand and quantify the actual fire hazards of ionic liquids Energy. Environ. Sci. 6 699

    CAS  Google Scholar 

  11. Chancelier L, Diallo A O, Santini C C G. Marlair, Gutel T, Mailley S and Len C 2014 Targeting adequate thermal stability and fire safety in selecting ionic liquid-based electrolytes for energy storage Phys. Chem. Chem. Phys. 16 1967

    Article  CAS  Google Scholar 

  12. Pervulescu V I and Hardacre C 2007 Catalysis in ionic liquids Chem. Rev. 107 2615

    Article  Google Scholar 

  13. (a) Sheldon R 2001 Catalytic reactions in ionic liquids Chem. Commun. 2399; (b) Jeyaveeran J C, Praveen C, Arun Y, Prince A A M and Perumal P T 2016 Cycloisomerization of acetylenic oximes and hydrazones under gold catalysis: Synthesis and cytotoxic evaluation of isoxazoles and pyrazoles J. Chem. Sci. 128 73

  14. (a) Ebrahimi J, Mohammadi A, Pakjoo V, Bahramzade E and Habibi A 2012 Highly efficient solvent-free synthesis of pyranopyrazoles by a Brønsted-acidic ionic liquid as a green and reusable catalyst J. Chem. Sci. 124 1013; (b) Boruah P R, Koiri M J, Bora U and Sarma D 2014 A new recyclable/reusable ionic liquid/LiCl system for Suzuki–Miyaura cross coupling reactions Tetrahedron Lett. 55 2423

  15. (a) Elhaj E, Wang H and Gu Y 2019 Functionalized quaternary ammonium salt ionic liquids (FQAILs) as an economic and efficient catalyst for synthesis of glycerol carbonate from glycerol and dimethyl carbonate Mol. Catal. 468 19; (b) Ali A A, Konwar M, Chetia M and Sarma D 2016 [Bmim]OH mediated Cu-catalyzed azide–alkyne cycloaddition reaction: A potential green route to 1,4-disubstituted 1,2,3-triazoles Tetrahedron Lett. 57 5661

  16. (a) Yang C, Liu M, Zhang J, Wang X, Jiang Y and Sun J 2018 Facile synthesis of DBU-based ionic liquids cooperated with ZnI2 as catalysts for efficient cycloaddition of CO2 to epoxides under mild and solvent-free conditions Mol. Catal. 450 39; (b) Konwar M, Khupse N D, Saikia P J and Sarma D 2018 A potential greener protocol for peptide coupling reactions using recyclable/reusable ionic liquid [C4-DABCO][N(CN)2] J. Chem. Sci. 130 53

  17. Khalafi-Nezhad A and Mohammadi S 2014 Chitosan supported ionic liquid: a recyclable wet and dry catalyst for the direct conversion of aldehydes into nitriles and amides under mild conditions RSC Adv. 4 13782

    CAS  Google Scholar 

  18. (a) Prodius D, Macaev F, Stingaci E, Pogrebnoi V, Mereacre V, Novitchi G, Kostakis G E, Anson C E and Powell A K 2013 Catalytic “triangles”: binding of iron in task-specific ionic liquids Chem. Commun. 49 1915; (b) Nagpal R, Arora S and Chauhan S M 2016 Efficient synthesis of metallated thioporphyrazines in task specific ionic liquids and their spectroscopic investigation of binding with selected transition metal ions J. Chem. Sci. 128 1417

  19. Leng Y, Wang J, Zhu D, Ren X, Ge H and Shen L 2009 Heteropolyanion‐based ionic liquids: reaction‐induced self‐separation catalysts for esterification Angew. Chem. Int. Ed. 48 174

    Article  Google Scholar 

  20. Sarkar A, Roy R and Chakraborti A K 2011 Ionic liquid catalysed reaction of thiols with α, β-unsaturated carbonyl compounds-remarkable influence of the C-2 hydrogen and the anion Chem. Commun. 47 4538

    CAS  Google Scholar 

  21. Qiao K and Yokoyama C 2004 Novel acidic ionic liquids catalytic systems for Friedel–Crafts alkylation of aromatic compounds with alkenes Chem. Lett. 33 472

    CAS  Google Scholar 

  22. Hitchcock P B, Seddon K R and Welton T 1993 Hydrogen-bond acceptor abilities of tetrachlorometalate (II) complexes in ionic liquids J. Chem. Soc. Dalton Trans. 17 2639

    Article  Google Scholar 

  23. Hayashi S and Hamaguchi H 2004 Discovery of a Magnetic Ionic Liquid [bmim]FeCl4 Chem. Lett. 33 1590

    CAS  Google Scholar 

  24. Abbot A P, Capper G, Davies D L and Rasheed R 2004 Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures Inorg. Chem. 43 3447

    Google Scholar 

  25. Duan Z, Gu Y and Deng Y 2006 Green and moisture-stable Lewis acidic ionic liquids (choline chloride· xZnCl2) catalyzed protection of carbonyls at room temperature under solvent-free conditions Catal. Commun. 7 651

    CAS  Google Scholar 

  26. (a) Yin D, Li C, Tao L, Yu N, Hu S and Yin D 2006 Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids J. Mol. Catal. A: Chem. 245 260; (b) Prikhod’ko S A, Popov A G and Adonin N Y 2018 Effects arising from the replacement of aprotic dipolar solvents with ionic liquids in the nickel-catalyzed reduction of aryl chlorides Mol. Catal. 461 19

  27. Dale D J, Dunn P J, Golightly C, Hughes M L, Levett P C, Pearce A K, Searle P M, Ward G and Wood A S 2000 The chemical development of the commercial route to sildenafil: a case history The chemical development of the commercial route to sildenafil: A case history Org. Process. Res. Dev. 4 17

    Article  CAS  Google Scholar 

  28. Dai H, Chen J, Li G, Ge S, Shi Y, Fang Y and Ling Y 2017 Design, synthesis, and bioactivities of novel oxadiazole-substituted pyrazole oximes Bioorg. Med. Chem. Lett. 27 950

    Article  CAS  Google Scholar 

  29. Alam R, Wahi D, Singh R, Sinha D, Tandon V, Grover A and Rahisuddin 2016 Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents Bioorg. Chem. 69 77

    CAS  Google Scholar 

  30. Chougala B M, Samundeeswari S, Holiyachi M, Shastri L A, Dodamani S, Jalalpure S, Dixit S R, Joshi S D and Sunagar V A 2017 Synthesis, characterization and molecular docking studies of substituted 4-coumarinylpyrano[2,3-c]pyrazole derivatives as potent antibacterial and anti-inflammatory agents Eur. J. Med. Chem. 125 101

    Article  CAS  Google Scholar 

  31. Singer R A, Caron S, McDermott R E, Arpin R and Do N M 2003 Alternative biarylphosphines for use in the palladium-catalyzed amination of aryl halides Synthesis 11 1727

    Article  Google Scholar 

  32. Eisenwiener A, Neuburger M and Kaden T A 2007 Cu2+ and Pt2+ complexes of pyrazole and triazole based dinucleating ligands Dalton Trans. 218

  33. Yang D, Sun P, Wei W, Meng L, He L, Fang B, Jiang W and Wang H 2016 Metal-free iodine-catalyzed direct cross-dehydrogenative coupling (CDC) between pyrazoles and thiols Org. Chem. Front. 3 1457

    Article  CAS  Google Scholar 

  34. Terrett N K, Bell A S, Brown D and Ellis P 1996 Sildenafil (VIAGRATM), a potent and selective inhibitor of type 5 cGMP phosphodiesterase with utility for the treatment of male erectile dysfunction Bioorg. Med. Chem. Lett. 6 1819

    Article  Google Scholar 

  35. Pfefferkorn J A, Choi C, Larsen S D, Auerbach B, Hutchings R, Park W, Askew V, Dillon L, Hanselman J C, Lin Z, Lu G H, Robertson A, Sekerke C, Harris M S, Pavlovsky A, Bainbridge G, Caspers N, Kowala M and Tait B D 2008 Substituted Pyrazoles as Hepatoselective HMG-CoA Reductase Inhibitors: Discovery of (3R,5R)-7-[2-(4-Fluoro-phenyl)-4-isopropyl-5-(4-methyl-benzylcarbamoyl)-2H-pyrazol-3-yl]-3,5-dihydroxyheptanoic Acid (PF-3052334) as a Candidate for the Treatment of Hypercholesterolemia J. Med. Chem. 51 31

    Article  CAS  Google Scholar 

  36. Catalan J, Fabero F, Claramunt R M, Maria M D S, Foces-Foces M C, Cano F H, Martinez-Ripoll M, Elguero J and Sastre R 1992 New ultraviolet stabilizers: 3-and 5-(2’-hydroxyphenyl) pyrazoles J. Am. Chem. Soc. 114 5039

    Article  CAS  Google Scholar 

  37. Catalan J, Fabero F, Guijano M S, Claramunt R M, Maria M D S, Foces-Foces M C, Cano F H, Elguero J and Sastre R 1990 Photoinduced intramolecular proton transfer as the mechanism of ultraviolet stabilizers: a reappraisal J. Am. Chem. Soc. 112 747

    Article  CAS  Google Scholar 

  38. Dorlars A, Schellhammer C W and Schroeder J 1975 Heterocycles as structural units in new optical brighteners Angew. Chem. Int. Ed. 14 665

    Article  Google Scholar 

  39. Yang Z, Zhang K, Gong F, Li S, Chen J, Ma J S, Sobenina L N, Mikhaleva A I, Trofimov B A and Yang G 2011 A highly selective fluorescent sensor for fluoride anion based on pyrazole derivative: Naked eye “no–yes” detection J. Photochem. Photobiol. A 217 29

    Article  CAS  Google Scholar 

  40. Li J, Zhou J H, Li Y Z, Weng L H, Chen X T, Yu Z and Xue Z 2004 Synthesis and structures of two luminescent Zn (II) complexes with pyrazole and carboxylate ligands Inorg. Chem. Commun. 7 538

    CAS  Google Scholar 

  41. Mayoral M J, Ovejero P, Campo J A, Heras J V, Pinilla E, Torres M R, Lodeiro C and Cano M 2008 Silver and gold luminescent metallomesogens based on pyrazole ligands Dalton Trans. 6912

  42. Heller S T and Natarajan S R 2006 1, 3-Diketones from acid chlorides and ketones: a rapid and general one-pot synthesis of pyrazoles Org. Lett. 8 2675

    CAS  Google Scholar 

  43. Wang Z and Qin H 2004 Solventless syntheses of pyrazole derivatives Green Chem. 6 90

    CAS  Google Scholar 

  44. Chen B, Zhu C, Tang Y and Ma S 2014 Copper-mediated pyrazole synthesis from 2, 3-allenoates or 2-alkynoates, amines and nitriles Chem. Commun. 50 7677

    CAS  Google Scholar 

  45. Armstrong A, Jones L H, Knight J D and Kelsey R D 2005 Oxaziridine-mediated amination of primary amines: scope and application to a one-pot pyrazole synthesis Org. Lett. 7 713

    CAS  Google Scholar 

  46. Escribano F C, Alcdntara M P D and Gomez-Sanchez A 1988 Heterocycle formation from 1, 3-dinitroalkanes. A novel pyrazole synthesis Tetrahedron Lett. 29 6001

    Article  Google Scholar 

  47. Wei W, Wang Z, Yang X, Yu W and Chang J 2017 Divergent Synthesis of 1H‐Indazoles and 1H‐Pyrazoles from Hydrazones via Iodine‐Mediated Intramolecular Aryl and sp3 C–H Amination Adv. Synth. Catal. 359 3378

    Article  CAS  Google Scholar 

  48. Deng X and Mani N S 2008 Regioselective Synthesis of 1,3,5-Tri- and 1,3,4,5-Tetrasubstituted Pyrazoles from N-Arylhydrazones and Nitroolefins J. Org. Chem. 73 2412

    Article  CAS  Google Scholar 

  49. Punner F, Sohtome Y and Sodeoka M 2016 Solvent-dependent copper-catalyzed synthesis of pyrazoles under aerobic conditions Chem. Commun. 52 14093

    CAS  Google Scholar 

  50. Tang M, Zhang W and Kong Y 2013 DABCO-promoted synthesis of pyrazoles from tosylhydrazones and nitroalkenes Org. Biomol. Chem. 11 6250

    Article  CAS  Google Scholar 

  51. Zhang H, Wei Q, Zhu G, Qu J and Wang B 2016 A facile and expeditious approach to substituted 1H-pyrazoles catalyzed by iodine Tetrahedron Lett. 57 2633

  52. Polshettiwar V and Varma R S 2008 Greener and rapid access to bio-active heterocycles: room temperature synthesis of pyrazoles and diazepines in aqueous medium Tetrahedron Lett. 49 397

    CAS  Google Scholar 

  53. Nikpassand M, Mamaghani M, Tabatabaeian K and Abiazi M K 2009 KSF: an efficient catalyst for the regioselective synthesis of 1, 5-diaryl pyrazoles using Baylis–Hillman adducts Mol. Divers. 13 389

    CAS  Google Scholar 

  54. Choudhary S, Muthyala M K, Parang K and Kumar A 2014 Ionic liquid-supported sulfonyl hydrazine: a useful reagent for traceless synthesis of pyrazoles Org. Chem. Front. 1 683

    Article  CAS  Google Scholar 

  55. Yuan B, Zhang F, Li Z, Yang S and Yan R 2016 AgNO2 as the NO Source for the Synthesis of Substituted Pyrazole N-Oxides from N-Propargylamines Org. Lett. 18 5928

    CAS  Google Scholar 

  56. Ahmed M S M, Kobayashi K and Mori A 2005 One-pot construction of pyrazoles and isoxazoles with palladium-catalyzed four-component coupling Org. Lett. 7 4487

    CAS  Google Scholar 

  57. Pal G, Paul S, Ghosh P P and Das A R 2014 PhIO promoted synthesis of nitrile imines and nitrile oxides within a micellar core in aqueous media: a regiocontrolled approach to synthesizing densely functionalized pyrazole and isoxazoline derivatives RSC Adv. 4 8300

    Article  CAS  Google Scholar 

  58. Zolfigol M A, Afsharnadery F, Baghery S, Salehzadeh S and Maleki F 2015 Catalytic applications of {[HMIM]C(NO2)3}: as a nano ionic liquid for the synthesis of pyrazole derivatives under green conditions and a mechanistic investigation with a new approach RSC Adv. 5 75555

    Article  CAS  Google Scholar 

  59. Bora P P, Bihani M and Bez G 2013 Multicomponent synthesis of dihydropyrano [2, 3-c] pyrazoles catalyzed by lipase from Aspergillus niger J. Mol. Catal. B: Enzym. 92 24

    Article  CAS  Google Scholar 

  60. Shabalala N, Pagadala R and Jonnalagadda S B 2015 Ultrasonic-accelerated rapid protocol for the improved synthesis of pyrazoles Ultrason. Sonochem. 27 423

    Article  CAS  Google Scholar 

  61. Polshettiwar V and Varma R S 2010 Nano-organocatalyst: magnetically retrievable ferrite-anchored glutathione for microwave-assisted Paal–Knorr reaction, aza-Michael addition, and pyrazole synthesis Tetrahedron 66 1091

  62. Shelke S N, Bankar S R, Mhaske G R, Kadam S S, Murade D K, Bhorkade S B, Rathi A K, Bundaleski N, Teodoro O M N D, Zboril R, Varma R S and Gawande M B 2014 Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions ACS Sustain. Chem. Eng. 2 1699

    CAS  Google Scholar 

  63. Del Sesto R E, McCleskey T M, Burrell A K, Baker G A, Thompson J D, Scott B L, Wilkes J S and Williams P 2008 Structure and magnetic behavior of transition metal based ionic liquids Chem. Commun. 4 447

    Google Scholar 

  64. Bwambok D K, Thuo M M, Atkinson M B, Mirica K A, Shapiro N D and Whitesides G M 2013 Paramagnetic ionic liquids for measurements of density using magnetic levitation Anal. Chem. 85 8442

    Article  CAS  Google Scholar 

  65. Bäcker T, Breunig O, Valldor M, Merz K, Vasylyeva V and Mudring A V 2011 In-Situ Crystal Growth and Properties of the Magnetic Ionic Liquid [C2mim][FeCl4] Cryst. Growth. Des. 11 2564

    Article  Google Scholar 

  66. Slawomir P and Anja‐Verena M 2010 Synthesis, Structure, and Physico‐optical Properties of Manganate (II)‐Based Ionic Liquids Chem. Eur. J. 16 3355

    Article  Google Scholar 

  67. Smith M C, Xiao Y, Wang H, George S J, Coucouvanis D, Koutmos M, Sturhahn W, Alp E E, Zhao J and Cramer S P 2005 Normal-Mode Analysis of FeCl -4 and Fe2S2Cl 2-4 via Vibrational Mössbauer, Resonance Raman, and FT-IR Spectroscopies Inorg. Chem. 44 5562

    CAS  Google Scholar 

  68. Sitze M S, Schreiter E R, Patterson E V and Freeman R G 2001 Ionic Liquids Based on FeCl3 and FeCl2. Raman Scattering and ab Initio Calculations Inorg. Chem. 40 2298

  69. Li M, De Rooy S L, Bwambok D K, El-Zahab B, DiTusa J F and Warner I M 2009 Magnetic chiral ionic liquids derived from amino acids Chem. Commun. 45 6922

    Google Scholar 

  70. Yoshida Y and Saito G 2006 Influence of structural variations in 1-alkyl-3-methylimidazolium cation and tetrahalogenoferrate (III) anion on the physical properties of the paramagnetic ionic liquids J. Mater. Chem. 16 1254

    Article  CAS  Google Scholar 

  71. Fredlake C P, Crosthwaite J M, Hert D G, Aki S N and Brennecke J F 2004 J. Chem. Eng. Data 49 954

    Article  CAS  Google Scholar 

  72. Bera K, Sarkar S, Biswas S, Maiti S and Jana U 2011 Iron-Catalyzed Synthesis of Functionalized 2H-Chromenes via Intramolecular Alkyne−Carbonyl Metathesis J. Org. Chem. 76 3539

    Article  CAS  Google Scholar 

  73. Sarkar S, Bera K, Maiti S, Biswas S and Jana U 2013 Three-Component Coupling Synthesis of Diversely Substituted N-Aryl Pyrroles Catalyzed by Iron (III) Chloride Synth. Commun. 43 1563

    CAS  Google Scholar 

  74. Maiti S, Biswas S and Jana U 2010 Iron(III)-Catalyzed Four-Component Coupling Reaction of 1,3-Dicarbonyl Compounds, Amines, Aldehydes, and Nitroalkanes: A Simple and Direct Synthesis of Functionalized Pyrroles J. Org. Chem. 75 1674

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. K. is thankful to UGC for UGC-BSR fellowship. D. S. is thankful to DST, New Delhi, India for a research grant [No. EMR/2016/002345]. The authors also acknowledge the Department of Science and Technology for financial assistance under DST-FIST programme and UGC, New Delhi for Special Assistance Programme (UGC-SAP) to the Department of Chemistry, Dibrugarh University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arvind Kumar or Diganta Sarma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8831 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konwar, M., Elnagdy, H.M.F., Gehlot, P.S. et al. Transition metal containing ionic liquid-assisted one-pot synthesis of pyrazoles at room temperature. J Chem Sci 131, 80 (2019). https://doi.org/10.1007/s12039-019-1659-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1659-9

Keywords

Navigation