Skip to main content
Log in

Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The electrodeposition of platinum nanoparticles (PtNPs) on multiwall carbon nanotubes (MWCNTs)/fluorine-doped tin oxide glass (FTO) was investigated. Nucleation and growth mechanisms were studied via Scharifker and Hills model. Chronoamperometry results clearly show that the electrodeposition processes are diffusion-controlled and the diffusion coefficient is \(1.5\times 10^{-5 }\,\hbox {cm}^{2}\hbox {/s}\). The semi-spherical particles with lamellar morphology were observed in 1M \(\hbox {H}_{2}\hbox {SO}_{4}\), while a petal shape was discerned in 0.5M \(\hbox {H}_{2}\hbox {SO}_{4}\). Also, dispersion, size, and uniformity of PtNPs were investigated, where the finer distribution of PtNPs with the average size less than 100 nm was obtained in 0.5M \(\hbox {H}_{2}\hbox {SO}_{4}\) solution, and the mean diameter of Pt crystals was 20 nm. Finally, the electro-oxidation of methanol and oxygen reduction studied via cyclic voltammetry showed that as-prepared PtNPs/MWCNTs electrodes had superb electrocatalytic activity.

Graphical Abstract:

Electrodeposition of platinum nanoparticles (PtNPs) on multiwall carbon nanotubes (MWCNTs)/flourine-doped tin oxide glass (FTO) was conducted successfully. The electrodeposition mechanism of PtNPs nucleation and growth on MWCNTs was studied. It was found that fine and well-distributed PtNPs/MWCNTs electrode shows a high electrochemical activity for methanol electro-oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Niu J J and Wang J N 2008 Activated carbon nanotubes-supported catalyst in fuel cells Electrochim. Acta 53 8058

    CAS  Google Scholar 

  2. Umeda M, Kokubo M, Mohamedi M and Uchida I 2003 Porous-microelectrode study on Pt/C catalysts for methanol electrooxidation Electrochim. Acta 48 1367

    CAS  Google Scholar 

  3. Wang J N, Zhang L, Niu J J, Yu F, Sheng Z M, Zhao Y Z, Chang H and Pak C 2007 Synthesis of high surface area, water-dispersible graphitic carbon nanocages by an in situ template approach Chem. Mater. 19 453

    CAS  Google Scholar 

  4. Niu J J, Wang J N, Zhang L and Shi Y 2007 Electrocatalytical activity on oxidizing hydrogen and methanol of novel carbon nanocages of different pore structures with various platinum loadings J. Phys. Chem. C 111 10329

    Article  CAS  Google Scholar 

  5. Giorgi L, Pozio A, Bracchini C, Giorgi R and Turtu S 2001 \(\text{ H }_{2}\) and \(\text{ H }_{2}\text{/CO }\) oxidation mechanism on Pt/C, Ru/C and Pt–Ru/C electrocatalysts J. Appl. Electrochem. 31 325

    Article  CAS  Google Scholar 

  6. Wang J N, Zhao Y Z and Niu J J 2007 Preparation of graphitic carbon with high surface area and its application as an electrode material for fuel cells J. Mater. Chem. 17 2251

    Article  CAS  Google Scholar 

  7. Nagle L C and Rohan J F 2008 Aligned carbon nanotube–Pt composite fuel cell catalyst by template electrodeposition J. Power Sources 185 411

    Article  CAS  Google Scholar 

  8. Girishkumar G, Vinodgopal K and Kamat P V 2004 Carbon nanostructures in portable fuel cells: single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction J. Phys. Chem. B 108 19960

    Article  CAS  Google Scholar 

  9. He Z, Chen J, Liu D, Tang H, Deng W and Kuang Y 2004 Deposition and electrocatalytic properties of platinum nanoparticals on carbon nanotubes for methanol electrooxidation Mater. Chem. Phys. 85 396

    CAS  Google Scholar 

  10. Tsai M C, Yeh T K and Tsai C H 2006 An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation Electrochem. Commun. 8 1445

    CAS  Google Scholar 

  11. Grandfield K, Sun F, FitzPatrick M, Cheong M and Zhitomirsky I 2009 Electrophoretic deposition of polymer-carbon nanotube–hydroxyapatite composites Surf. Coat. Technol. 203 1481

    Article  CAS  Google Scholar 

  12. Choa J, Konopka K, Rozniatowski K, Garcı’a-Lecina E, Shaffer M and Boccaccini A 2009 Characterisation of carbon nanotube films deposited by electrophoretic deposition Carbon 47 58

    Article  Google Scholar 

  13. Li X and Hsing I M 2006 The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes Electrochim. Acta 51 5250

    CAS  Google Scholar 

  14. Hsieh C T, Chou Y W and Chen W Y 2008 J. Alloys Compd. 466 233

    Article  CAS  Google Scholar 

  15. Zhao Y, Fan L, Qiu Y and Yang S 2008 Fabrication and electrochemical activity of carbon nanotubes decorated with PtRu nanoparticles in acid solution Electrochim. Acta 52 5873

    Google Scholar 

  16. Saminathan K, Kamavaram V, Veedu V and Kannan A 2009 Preparation and evaluation of electrodeposited platinum nanoparticles on in situ carbon nanotubes grown carbon paper for proton exchange membrane fuel cells Int. J. Hydrogen Energy 34 3838

    Article  CAS  Google Scholar 

  17. Selvaraj V, Grace AN, Alagar M 2009 J. Colloid Interface Sci. 333 254

    Article  CAS  Google Scholar 

  18. Tang H, Chen J, Nie L, Liu D, Deng W, Kuang Y and Yao S 2004 High dispersion and electrocatalytic properties of platinum nanoparticles on graphitic carbon nanofibers (GCNFs) J. Colloid Interface Sci. 269 26

    Article  CAS  Google Scholar 

  19. Riccardis M D and Carbone D 2006 Electrodeposition of well adherent metallic clusters on carbon substrates Appl. Surf. Sci. 252 5403

    Article  Google Scholar 

  20. Paoletti C, Cemmi A, Giorgi L, Giorgi R, Pilloni L, Serra E and Pasquali M 2008 J. Power Sources 183 84

    Article  CAS  Google Scholar 

  21. Ye J S, Cui H F, Wen Y, Zhang W D, Xu Q D and Sheu F S 2006 Electrodeposition of Platinum Nanoparticles on Multi-Walled Carbon Nanotubes for Electrocatalytic Oxidation of Methanol Microchim. Acta 152 267

    CAS  Google Scholar 

  22. Ueda M, Dietz H, Anders A, Kneppe H, Meixner A and Plieth W 2002 Double-pulse technique as an electrochemical tool for controlling the preparation of metallic nanoparticles Electrochim. Acta 48 377

    CAS  Google Scholar 

  23. Tsai M C, Yeh T K and Tsai C H 2008 Mater. Chem. Phys. 109 422

    Article  CAS  Google Scholar 

  24. Plyasova L, Molina I Y, Gavrilov A, Cherepanova S, Cherstiouk O, Rudina N, Savinova E and Tsirlina G 2006 Electrodeposition of platinum-ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloths for methanol oxidation Electrochim. Acta  51 4477

    CAS  Google Scholar 

  25. Xu Y and Lin X 2007 Selectively attaching Pt-nano-clusters to the open ends and defect sites on carbon nanotubes for electrochemical catalysis Electrochim. Acta 52 5140

    CAS  Google Scholar 

  26. Scharifker B and Hills G 1983 Theoretical and experimental studies of multiple nucleation Electrochim. Acta 28 879

    CAS  Google Scholar 

  27. Hariri M B, Dolati A and Moakhar R S 2013 The potentiostatic electrodeposition of gold nanowire/nanotube in \(\text{ HAuCl }_{4}\) solutions based on the model of recessed cylindrical ultramicroelectrode array J. Electrochem. Soc. 160 D279

    Article  CAS  Google Scholar 

  28. Lin X and Li Y 2006 A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode Biosens. Bioelectron. 22 253

    Article  CAS  Google Scholar 

  29. Chen X, Li N, Eckhard K, Stoica L, Xia W, Assmann J, Muhler M and Schuhmann W 2007 Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes Electrochem. Commun. 9 1348

    CAS  Google Scholar 

  30. Cottrell F G 1903 Residual current in galvanic polarization, regarded as a diffusion problem Z. Phys. Chem. 42 385

    Google Scholar 

  31. Cho J, Konopka K, Rożniatowski K, García-Lecina E, Shaffer M S and Boccaccini A R 2009 Characterisation of carbon nanotube films deposited by electrophoretic deposition Carbon 47 58

    Article  CAS  Google Scholar 

  32. Nishimura T, Morikawa T, Yokoi M, Iwakura C and Inoue H 2008 Preparation of novel Pt-based nanoparticles by double potential step electrolysis and their electrocatalytic activity for oxygen reduction reaction Electrochim. Acta 54 499

    CAS  Google Scholar 

  33. Cullity B D 1978 In Elements of X-ray diffraction (Massachusetts: Addison-Wesley)

    Google Scholar 

  34. Corni I, Ryan M P and Boccaccini A R 2008 Electrophoretic deposition: from traditional ceramics to nanotechnology J. Eur. Ceram. Soc. 28 1353

  35. Gao B, Yue G Z, Qiu Q, Cheng Y, Shimoda H, Fleming L and Zhou O 2001 Fabrication and electron field emission properties of carbon nanotube films by electrophoretic deposition Adv. Mater. 13 1770

    CAS  Google Scholar 

  36. Seo M H, Choi S M, Kim H J, Kim J H, Cho B K and Kim W B 2008 A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation J. Power Sources 179 81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roozbeh Siavash Moakhar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 2307 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghartavol, H.M., Moakhar, R.S. & Dolati, A. Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation. J Chem Sci 129, 1399–1410 (2017). https://doi.org/10.1007/s12039-017-1346-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1346-7

Keywords

Navigation