Skip to main content
Log in

Novel Nanocomposite of Chitosan-protected Platinum Nanoparticles Immobilized on Nickel Hydroxide: Facile Synthesis and Application as Glucose Electrochemical Sensor

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Novel nanocomposite of nickel hydroxide/chitosan/platinum was successfully synthesised with chitosan (CS) as a dispersing and protecting agent. Its potential application in non-enzymatic electrochemical glucose sensor was studied. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the composition and morphology of this nanocomposite. The electrochemical investigations of this glucose sensor exhibited remarkable analytical performances towards the oxidation of glucose. In particular, glucose can be selectively and sensitively detected in a wide linear range from 3.0 × 10−6 to 1.1 × 10−2 mol ⋅L −1 with a detection limit of 0.56 ±0.03 μ molL −1 at a signal-tonoise ratio of 3 (S/N = 3). Furthermore, the Ni(OH)2/CS/Pt nanocomposite-modified GCE also showed an acceptable anti-interference ability and stability. Importantly, the Ni(OH)2/CS/Pt based sensor can be used to detect trace amount of glucose in serum samples. The results demonstrated that the Ni(OH)2/CS/Pt nanocomposite can be potentially useful to construct a new glucose sensing platform.

A facile in situ reduction method to synthesize a novel nanocomposite of chitosan-protected platinum nanoparticles immobilized on nickel hydroxide, (Ni(OH)2/CS/Pt) is described. Further, a glucose electrochemical sensor was fabricated by immobilizing Ni(OH)2/CS/Pt nanocomposites on a glassy carbon electrode (GCE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Chen C, Xie Q J, Yang D W, Xiao H L, Fu Y C, Tan Y M and Yao S Z 2013 RSC Adv. 3 4473

    Article  CAS  Google Scholar 

  2. Dutta A K, Das S, Samanta S, Samanta P K, Adhikary B and Biswas P 2013 Talanta 107 361

    Article  CAS  Google Scholar 

  3. Cheng Z L, Wang E K and Yang X R 2001 Biosens. Bioelectron. 16 179

    Article  CAS  Google Scholar 

  4. Yang P, Jin S Y, Xu Q Z and Yu S H 2013 Small 9 199

    Article  CAS  Google Scholar 

  5. Zhai D Y, Liu B R, Shi Y, Pan L J, Wang Y Q, Li W B, Zhang R and Yu G H 2013 ACS Nano. 7 3540

    Article  CAS  Google Scholar 

  6. Fang L X, Liu B, Liu L L, Li Y H, Huang K J and Zhang Q Y 2016 Sens. Actuators, B 222 1096

    Article  CAS  Google Scholar 

  7. Baghayeri M, Amiri A and Farhadi S 2016 Sens. Actuators, B 225 354

    Article  CAS  Google Scholar 

  8. Li L M, Du Z F, Liu S, Hao Q Y, Wang Y G, Li Q H and Wang T H 2010 Talanta 82 1637

    Article  CAS  Google Scholar 

  9. Long L H, Hoi A and Halliwell B 2010 Arch. Biochem. Biophys. 501 162

    Article  CAS  Google Scholar 

  10. Rao D J, Zhang J and Zheng J B 2016 J. Chem. Sci. 128 839

    Article  CAS  Google Scholar 

  11. Felix S, Kollu P, Raghupathy B P, Jeong S K and Grace A N 2014 J. Chem. Sci. 126 25

    Article  CAS  Google Scholar 

  12. Wu G H, Song X H, Wu Y F, Chen X M, Luo F and Chen X 2013 Talanta 105 379

    Article  CAS  Google Scholar 

  13. Badhulika S, Paul R K, Terse T and Mulchandani A 2014 Electroanal. 26 103

    Article  CAS  Google Scholar 

  14. Yu Y Y, Chen Z G, He S J, Zhang B B, Li X C and Yao M 2014 Biosens. Bioelectron. 52 147

    Article  CAS  Google Scholar 

  15. Mazeiko V, Kausaite-Minkstimiene A, Ramanaviciene A, Balevicius Z and Ramanavicius A 2013 Sens. Actuators, B 189 187

    Article  CAS  Google Scholar 

  16. Wang C, deKrafft K E and Lin W 2012 J. Am. Chem. Soc. 134 7211

    Article  CAS  Google Scholar 

  17. Matsumoto H, Tanji T, Amezawa K, Kawada T, Uchimoto Y, Furuya Y and Ishihara T 2011 Solid State Ionics 182 13

    Article  CAS  Google Scholar 

  18. Yu Y Y, Yang Y, Gu H, Zhou T S and Shi G Y 2013 Biosens. Bioelectron. 41 511

    Article  CAS  Google Scholar 

  19. Colvin A E and Jiang H 2013 J. Biomed. Mater. Res. A 101 1274

    Article  Google Scholar 

  20. Gowthaman N S K and John S A 2016 J. Chem. Sci. 128 331

    Article  CAS  Google Scholar 

  21. Guo S J and Wang E K 2011 Nano Today 6 240

    Article  CAS  Google Scholar 

  22. Martins P R, Aparecida Rocha M, Angnes L, Eisi Toma H and Araki K 2011 Electroanal. 23 2541

    Article  CAS  Google Scholar 

  23. Tan Y, Srinivasan S and Choi K S 2005 J. Am. Chem. Soc. 127 3596

    Article  CAS  Google Scholar 

  24. Chen J and Zheng J B 2015 J. Electrochem. Chem. 749 83

    Article  CAS  Google Scholar 

  25. Mesbah Namini S M, Mohsenifar A, Karami R, Rahmani-Cherati T, Shojaei T R and Tabatabaei M 2015 Chem. Pap. 69 1291

    Article  CAS  Google Scholar 

  26. Dash M, Chiellini F, Ottenbrite R M and Chiellini E 2011 Prog. Polym. Sci. 36 981

    Article  CAS  Google Scholar 

  27. Rabea E I, Badawy M E T, Stevens C V, Smagghe G and Steurbaut W 2003 Biomacromolecules 4 1457

    Article  CAS  Google Scholar 

  28. Kumar M N R 2000 React. Funct. Polym. 46 1

    Article  CAS  Google Scholar 

  29. Lian W J, Liu S, Yu J H, Xing X R, Li J, Cui M and Huang J D 2012 Biosens. Bioelectron. 38 163

    Article  CAS  Google Scholar 

  30. Bai Z Y, Zhou C L, Gao N, Pang H J and Ma H Y 2016 RSC Adv. 6 937

    Article  CAS  Google Scholar 

  31. Prathap M A, Anuraj V, Satpati B and Srivastava R 2013 J. Hazard. Mater. 262 766

    Article  Google Scholar 

  32. Mano N, Mao F and Heller A 2003 J. Am. Chem. Soc. 125 6588

    Article  CAS  Google Scholar 

  33. Qu W D, Zhang L Y and Chen G 2013 Biosens. Bioelectron. 42 430

    Article  CAS  Google Scholar 

  34. Yuan J H, Wang K and Xia X H 2005 Adv. Funct. Mater. 15 803

    Article  CAS  Google Scholar 

  35. Safavi A, Maleki N and Farjami E 2009 Biosens. Bioelectron. 24 1655

    Article  CAS  Google Scholar 

  36. Wang J Y, Chen L C and Ho K C 2013 ACS Appl. Mater. Inter. 5 7852

    Article  CAS  Google Scholar 

  37. Majdi S, Jabbari A, Heli H, Yadegari H, Moosavi-Movahedi A A and Haghgoo S 2009 J. Solid State Electrochem. 13 407

    Article  CAS  Google Scholar 

  38. Laviron E 1979 J. Electroanal. Chem. Interface 100 263

    Article  CAS  Google Scholar 

  39. Zhang Y H, Chen X and Yang W S 2008 Sens. Actuators, B 130 682

    Article  CAS  Google Scholar 

  40. Laviron E 1979 Electroanal. Chem. 101 19

    Article  CAS  Google Scholar 

  41. Jiang L, McNeil C J and Cooper J M 1995 J. Chem. Soc. Chem. Commun. 12 1293

    Article  Google Scholar 

  42. Zhang Y, Xu F G, Sun Y J, Shi Y, Wen Z W and Li Z 2011 J. Mater. Chem. 21 16949

    Article  CAS  Google Scholar 

  43. Shamsipur M, Najafi M and Hosseini M R M 2010 Bioelectrochemistry 77 120

    Article  CAS  Google Scholar 

  44. Li Y, Song Y Y, Yang C and Xia X H 2007 Electroanal. Chem. 9 981

    CAS  Google Scholar 

  45. Sun A L, Zheng J B and Sheng Q L 2012 Electrochim. Acta 65 64

    Article  CAS  Google Scholar 

  46. Meng L Y, Xia Y X, Liu W G, Zhang L, Zou P and Zhang Y S 2015 Electrochim. Acta 152 330

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this project by the National Science Foundation of China (No. 21575113 and No. 21275116), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20126101110013), the Natural Science Foundation of Shaanxi Province in China (No. 2013KJXX-25) and the Scientific Research Foundation of Shaanxi Provincial Key Laboratory (13JS098, 14JS094, 15JS100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JIANBIN ZHENG.

Additional information

Supplementary Information (SI)

The effect of concentration of NaOH solution on the oxidation peak current of glucose and Table S1 are shown in the Supplementary Information which is available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 38.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAO, D., SHENG, Q. & ZHENG, J. Novel Nanocomposite of Chitosan-protected Platinum Nanoparticles Immobilized on Nickel Hydroxide: Facile Synthesis and Application as Glucose Electrochemical Sensor. J Chem Sci 128, 1367–1375 (2016). https://doi.org/10.1007/s12039-016-1146-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1146-5

Keywords

Navigation