Skip to main content
Log in

Assembly of organic moiety with metal-oxide cluster to generate a new three dimensional supramolecular/hydrogen bonded network based on isopolymolybdate

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A new octa-molybdate formulated as (C2H6N4)2 [β-Mo 8 O 26].4H 2O (1) has been isolated by conventional solution method and structurally characterized by single-crystal X-ray diffraction method, IR spectroscopy, UV-Vis absorption, thermogravimetric analysis and cyclic voltammetry. Compound 1 crystallizes in the Triclinic system, space group P-1 with unit cell dimensions, a = 8.348 (2) Å, b = 10.154 (2) Å, c = 10.823 (3) Å, α=68.35 (2), β=71.59 (2), ɤ =78.55 (2), V = 805.5 (3) Å 3, and Z = 2. The crystal structure of 1 is built up from octa-molybdate [ β-Mo 8 O 26] 4− clusters connected through hydrogen-bonding interactions into a three-dimensional supramolecular network.

A new organic–inorganic hybrid material was prepared from ammonium hepta-molybdate in acidic medium by addition of 1, 2, 4-triazol-3-amine to obtain an octa-molybdate formulated as (C2H6N4)2 [β-Mo8O26].4H2O. The compound was characterized by single crystal X-ray diffraction method, IR spectroscopy, UV-Vis absorption, thermogravimetric analysis and cyclic voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pope M T and Müller A 1994 In Polyoxometalates: From Platonic Solids to Antiviral Activity (Dordrecht, The Netherlands: Kluwer)

  2. Pope M T and Müller A 1991 Angew. Chem. Int. Ed. 30 34

    Article  Google Scholar 

  3. Proust A, Matt B, Villanneau R, Guillemot G, Gouzerh P and Izzet G 2012 Chem. Soc. Rev. 41 7605

    Article  CAS  Google Scholar 

  4. Long D L, Tsunashima R and Cronin L 2010 Angew. Chem. Int. Ed. 49 1736

    Article  CAS  Google Scholar 

  5. Yin P, Zhang J, Li T, Zuo X, Hao J, Warner A, Chattopadhyay S, Shibata T, Wei Y and Liu T 2013 J. Am. Chem. Soc. 135 4529

    Article  CAS  Google Scholar 

  6. Zheng S T and Yang G Y 2012 Chem. Soc. Rev. 41 7623

    Article  CAS  Google Scholar 

  7. Song F, Ding Y, Ma B, Wang C, Wang Q, Du X, Fu S and Song J 2013 Energy Environ. Sci. 6 1170

    Article  CAS  Google Scholar 

  8. Zebiri I, Boufas S, Mosbah S, Bencharif L and Bencharif M 2015 J. Chem. Sci. 127 1769

    Article  CAS  Google Scholar 

  9. Hagrman D, Zubieta C, Rose D J, Zubieta J and Haushalter R C 1997 Angew. Chem., Int. Ed. 36 873

    Article  CAS  Google Scholar 

  10. Allis D G, Burkholder E and Zubieta J 2004 Polyhedron 23 1145

    Article  CAS  Google Scholar 

  11. Allis D G, Raring R S, Burkholder E and Zubieta J 2004 J. Mol. Struct. 11 688

    Google Scholar 

  12. Du X D, Li C H, Zhang Y, Liu S, Ma Y and You X Z 2011 Cryst. Eng. Comm. 13 2350

    Article  CAS  Google Scholar 

  13. Wilson E F 2009 In Synthesis, structure and mechanism of polyoxometalate self-assembly: Towards designed nanoscale architectures (Glasgow: University of Glasgow) p.11

  14. Hmida F, Ayed M, Ayed B and Haddad A 2015 J. Chem. Sci. 127 1645

  15. Shivaiah V 2006 Inorg. Chem. Commun. 9 1191

    Article  CAS  Google Scholar 

  16. Li M X, Chen H L, Geng J P, He X, Shao M, Zhu S R and Wang Z X 2011 Cryst. Eng. Commun. 13 1687

    Article  CAS  Google Scholar 

  17. Mascarós J R G and Martí-Gastaldo C 2007 Polyhedron 26 626

    Article  Google Scholar 

  18. Ray M S, Ghosh A, Chaudhuri S, Drew M G B and Ribas J 2004 Eur. J. Inorg. Chem. 15 3110

    Article  Google Scholar 

  19. Kumagai H, Kepert C J and Kurmoo M 2002 Inorg. Chem. 41 3410

    Article  CAS  Google Scholar 

  20. Cadiaua A, Adila K and Maisonneuve V 2011 Solid State Sci. 13 151

    Article  Google Scholar 

  21. CAD4, 1989 Solfware, version 5.0, Enraf Nonius, Delft, The Netherlands

  22. North A C T, Phillips D C and Mathews F S 1968 Acta Cryst. 24 351

    Article  Google Scholar 

  23. Sheldrick G M 1997 SHELXS-97 Program for the solution of crystal structures (University of Göttingen: Germany)

  24. Sheldrick G M 1997 SHELXL97 Program for the Refinement of Crystal Structures (University of Göttingen: Germany)

  25. (a) Lindquist I 1959 Ark. Kemi 2 349; (b) Atovmyan L O and Krasochka O N 1972 Zh. Struct. Khim. 13 342; (c) Day V W, Fredrich M F, Klemperer W G and Shum W 1977 J. Am. Chem. Soc. 99 952

  26. Softbv web page by Pr. Stefan Adams, http://kristall.uni.mki.gwdg.de/ softbv (accessed in February 2008)

  27. Yamase T 1998 Chem. Rev. 98 307

    Article  CAS  Google Scholar 

  28. Zhang X M, Shen B Z, You X Z and Fun H K 1997 Polyhedron 16 95

    Article  CAS  Google Scholar 

  29. Gong Y, Hu C, Li H, Tang W, Huang K and Hou W 2006 J. Mol. Struct. 784 228

    Article  CAS  Google Scholar 

  30. Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi B 15 627

    Article  CAS  Google Scholar 

  31. Fujishima A and Honda K 1972 Nature 37 238

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DONIA ZAMMEL.

Additional information

Supplementary Information (SI)

Crystallographic data with CCDC Numbers 1056979 for the structure reported in this paper has been deposited in the Cambridge Crystallographic Data Center and can be obtained free of charge via http://www.ccdc.cam.ac.uk/deposit, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: t(44) 01223 336 033 or e-mail to deposit@ccdc.cam.ac.uk. All additional information pertaining to characterization of the title compound 1 using IR spectroscopy (figure S1), thermogravimetric analysis (figure S2), UV-Vis absorption (figure S3), cyclic voltammetry measurements (figures S4 and S5) are given in the Supporting Information, available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 675 KB)

(DOCX 19.0 KB)

(PDF 254 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZAMMEL, D., NAGAZI, I. & HADDAD, A. Assembly of organic moiety with metal-oxide cluster to generate a new three dimensional supramolecular/hydrogen bonded network based on isopolymolybdate. J Chem Sci 128, 1141–1148 (2016). https://doi.org/10.1007/s12039-016-1110-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1110-4

Keywords

Navigation