Skip to main content

Advertisement

Log in

Characterization of Ag/Ag2SO4 system as reference electrode for in-situ electrochemical studies of advanced aqueous supercapacitors

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Silver metal covered by Ag2SO4 was investigated as a reference electrode for flat three-electrode cells. The potential stability of the Ag/Ag2SO4 electrode in neutral aqueous solutions utilized as electrolytes for asymmetric high-voltage supercapacitors is reported. It was found that the potential drift and temperature coefficient of this reference electrode are insignificant. Its use as an alternative to the Ag/AgCl electrode enables one to avoid the contamination of the supporting electrolyte solution by Cl anions, which are oxidized earlier than water molecules and other oxygen-containing anions (SO\(_{\mathrm {4}}^{\mathrm {2-}}\) or NO\(_{\mathrm {3}}^{\mathrm {-}}\)). Using the data obtained from three-electrode electrochemical measurements with the electrode in question, a graphene–carbon nanotube/MnO 2 supercapacitor cell accumulating 9.8 Wh kg −1 of specific energy at 1.75 V was built.

Silver sulfate reference electrode was developed to use as an alternative to the silver chloride one for application in studies of the supercapacitor electrode materials. Ag/Ag2SO4 electrode demonstrates excellent potential stability during the two-hour electrochemical measurements in open-circuit mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Maletin Y, Strelko V, Stryzhakova N, Zelinsky S, Rozhenko A B, Gromadsky D, Volkov V, Tychina S, Gozhenko O and Drobny D 2013 Energy Environ. Res. 3 156

    Article  Google Scholar 

  2. Ribeiro P F, Johnson B K, Crow M L, Arsoy A and Liu Y 2001 Proc. IEEE 12 1744

    Article  Google Scholar 

  3. Chu A and Braatz P 2002 J. Power Sources 112 236

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L and Jang J 2012 Chem. Soc. Rev. 41 797

    Article  CAS  Google Scholar 

  5. Stevenson A J, Gromadskyi D G, Hu D, Chae J, Guan L, Yu L and Chen G Z 2015 In Nanocarbons for Advanced Energy Storage X Feng (Ed.) (Weinheim: Wiley-VcH)

  6. Wang F, Xiao S, Hou Y, Hu C, Liu L and Wu Y 2013 RSC Adv. 3 13059

    Article  CAS  Google Scholar 

  7. Liu B, Wang X, Chen D, Fan Z and Shen G 2014 Nano Energy 10 99

    Article  CAS  Google Scholar 

  8. Masarapu C, Wang L P, Li X and Wei B 2012 Adv. Energy Mater. 2 546

    Article  CAS  Google Scholar 

  9. Liivand K, Thomberg T, Jänes A and Lust E 2015 ECS Trans. 64 41

    Article  Google Scholar 

  10. Zhong C, Deng Y, Hu W, Qiao J, Zhang L and Zhang J 2015 Chem. Soc. Rev. 44 7484, DOI. doi:10.1039/C5CS00303B 10. 1039/C5CS00303B

  11. Hromadśkyi D H, Fateev Y F, Stryzhakova N H and Maletin Y A 2010 Mater. Sci. 46 412

    Article  Google Scholar 

  12. Gromadskyi D G, Fateev Y F and Maletin Y M 2013 Corros. Sci. 69 191

    Article  CAS  Google Scholar 

  13. Zhao F, Wang Y, Xu X, Liu Y, Song R, Lu G and Li Y 2014 ACS Appl. Mater. Interfaces 6 11007

    Article  CAS  Google Scholar 

  14. Khomenko V, Raymundo-Piñero E and Béguin F 2006 J. Power Sources 153 183

    Article  CAS  Google Scholar 

  15. Gromadskyi D G, Chae J H, Norman S A and Chen G Z 2015 Appl. Energy 159 39

    Article  CAS  Google Scholar 

  16. Bott A W 1995 Curr. Sep. 14 64

    CAS  Google Scholar 

  17. Bard A J, Parsons R and Jordan J 1985 In Standard Potentials in Aqueous Solutions (New York: Marcel Dekker)

  18. Hamer W J and Wu Y C 1995 J. Solution Chem. 24 1013

    Article  CAS  Google Scholar 

  19. Velickỳ M, Tam K Y and Dryfe R A W 2012 Anal. Methods 4 1207

    Article  Google Scholar 

  20. Ruetschi P 2003 J. Power Sources 113 363

    Article  CAS  Google Scholar 

  21. https://www.basinc.com/mans/EC_epsilon/Techniques/CPot/ocp.html. Accessed on 09.12.2015

  22. Subramanian V, Zhu H and Wei B 2006 Electrochem. Commun. 8 827

    Article  CAS  Google Scholar 

  23. Shaffer M S P, Fan X and Windle A H 1998 Carbon 36 1603

    Article  CAS  Google Scholar 

  24. Hoshi Y, Narita Y, Honda K, Ohtaki T, Shitanda I and Itagaki M 2015 J. Power Sources 288 168

    Article  CAS  Google Scholar 

  25. Cimenti M, Co A C, Birss V I and Hill J M 2007 Fuel Cells 7 364

    Article  CAS  Google Scholar 

  26. Wang H, Forse A C, Griffin J M, Trease N M, Trognko L, Taberna P L, Simon P and Grey C P 2013 J. Am. Chem. Soc. 135 18968

    Article  CAS  Google Scholar 

  27. Sawuyer D T, Sobkowiak A and Roberts J L 1995 In Electrochemistry for Chemists (New York: Wiley)

  28. Shiue M Y, Sun Y C, Yeh J J, Yang J Y and Yang M H 1999 Analyst 124 15

    Article  CAS  Google Scholar 

  29. Ghodbane O, Pascal J L and Favier F 2009 ACS Appl. Mater. Interfaces 1 1130

    Article  CAS  Google Scholar 

  30. Toupin M, Brousse T and Bélanger D 2004 Chem. Mater. 16 3184

    Article  CAS  Google Scholar 

  31. Simon P and Gogotsi Y 2008 Nat. Mater. 7 845

    Article  CAS  Google Scholar 

  32. Hsieh C T and Teng H 2002 Carbon 40 667

    Article  CAS  Google Scholar 

  33. Khomenko V, Frackowiak E and Béguin F 2005 Electrochim. Acta 50 2499

    Article  CAS  Google Scholar 

  34. Stoller M D and Ruoff R S 2010 Energy Environ. Sci. 3 1294

    Article  CAS  Google Scholar 

  35. Du Paquier A, Shelburne J A, Plitz I, Badway F, Gozdz A S, Amatucci G G 2001 In Proc. 11 th Int. Semin. Double Layer Capacitors Similar Energy Storage Devices, (Deerfield Beach, FL, USA: Florida Educational Seminars Inc.)

  36. Zhang J and Zhao X S 2012 Chem. Sus. Chem. 5 (2012) 818

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks to Dr. S.A. Kirillov for his valuable advice in writing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DENYS G GROMADSKYI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GROMADSKYI, D.G. Characterization of Ag/Ag2SO4 system as reference electrode for in-situ electrochemical studies of advanced aqueous supercapacitors. J Chem Sci 128, 1011–1017 (2016). https://doi.org/10.1007/s12039-016-1084-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1084-2

Keywords

Navigation