Skip to main content

Advertisement

Log in

Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Multidrug resistance in Mycobacterium tuberculosis (M. Tb) and its coexistence with HIV are the biggest therapeutic challenges in anti-M. Tb drug discovery. The current study reports a Virtual Screening (VS) strategy to identify potential inhibitors of Mycobacterial cyclopropane synthase (CmaA1), an important M. Tb target considering the above challenges. Five ligand-based pharmacophore models were generated from 40 different conformations of the cofactors of CmaA1 taken from molecular dynamics (MD) simulations trajectories of CmaA1. The screening abilities of these models were validated by screening 23 inhibitors and 1398 non-inhibitors of CmaA1. A VS protocol was designed with four levels of screening i.e., ligand-based pharmacophore screening, structure-based pharmacophore screening, docking and absorption, distribution, metabolism, excretion and the toxicity (ADMET) filters. In an attempt towards repurposing the existing drugs to inhibit CmaA1, 6,429 drugs reported in DrugBank were considered for screening. To find compounds that inhibit multiple targets of M. Tb as well as HIV, we also chose 701 and 11,109 compounds showing activity below 1 μM range on M. Tb and HIV cell lines, respectively, collected from ChEMBL database. Thus, a total of 18,239 compounds were screened against CmaA1, and 12 compounds were identified as potential hits for CmaA1 at the end of the fourth step. Detailed analysis of the structures revealed these compounds to interact with key active site residues of CmaA1.

The paper presents generation of dynamic ligand-based pharmacophore model for Mycobacterial cyclopropane synthase and their validation. Aiming towards drug repositioning and selection of multi-target inhibitors, selected compounds from DrugBank and ChEMBL have been screened by a four-step virtual screening using the models and 12 potential compounds are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Scheme 1
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Balganesh T S, Alzari P M and Cole S T 2008 Trends Pharmacol. Sci. 29 576

    Article  CAS  Google Scholar 

  2. WHO 2014 Global Tuberculosis Report. http//www.who.int/tb/en/ (accessed on 20/06/2015)

  3. Zumla A, George A, Sharma V, Herbert N and Ilton B M 2013 Lancet 382 1765

    Article  Google Scholar 

  4. Varghese G M, Janardhanan J, Ralph R and Abraham O C 2013 Curr. Infect. Dis. Rep. 15 77

    Article  Google Scholar 

  5. Mdluli K, Kaneko T and Upton A 2015 Cold Spring Harb. Perspect. Med. doi:10.1101/cshperspect.a021154

  6. Kandel D D, Raychaudhury C and Pal D 2014 J. Mol. Model. 20 2164

    Article  Google Scholar 

  7. Raychaudhury C, Kandel D D and Pal D 2014 Croat. Chem. Acta 87 39

    Article  CAS  Google Scholar 

  8. Lamichhane G 2011 Trends Mol. Med. 17 25

    Article  CAS  Google Scholar 

  9. Choudhury C, Priyakumar U D and Sastry G N 2014 J. Struct. Biol. 187 38

    Article  CAS  Google Scholar 

  10. Choudhury C, Priyakumar U D and Sastry G N J. Chem. Inf. Model. 55 848

  11. Wishart D S, Knox C, Guo A C, Shrivastava S, Hassanali M, Stothard P, Chang Z and Woolsey J 2006 Nucleic Acids Res. 34 D668

    Article  CAS  Google Scholar 

  12. Tobinick E L 2009 Drug News Perspect. 22 119

    Article  Google Scholar 

  13. Bohari M H and Sastry G N 2012 J. Mol. Model. 18 4263

    Article  CAS  Google Scholar 

  14. Bento A P, Gaulton A, Hersey A, Bellis L J, Chambers J, Davies M, Krüger F A, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R and Overington J P 2014 Nucleic Acids Res. 42 D1083

    Article  CAS  Google Scholar 

  15. Kinnings S L, Liu N, Buchmeier N, Tonge P J, Xie L and Bourne P. 2009 PLoS Comput. Biol. 5 e1000423

    Article  Google Scholar 

  16. Carlson H A, Masukawa K M, Rubins K, Bushman F D, Jorgensen W L, Lins R D, Briggs J M and McCammon J A 2000 J. Med. Chem. 43 2100

    Article  CAS  Google Scholar 

  17. Meagher K L and Carlson H A 2004 J. Am. Chem. Soc. 126 13276

    Article  CAS  Google Scholar 

  18. Meagher K L and Carlson H A 2005 Proteins Struct. Funct. Bioinf. 58 119

    Article  CAS  Google Scholar 

  19. Damm K L and Carlson H A 2007 J. Am. Chem. Soc. 129 8225

    Article  CAS  Google Scholar 

  20. Kitchen D B, Decornez H, Furr J R and Bajorath J 2004 Nat. Rev. Drug Discov. 3 935

    Article  CAS  Google Scholar 

  21. Kubinyi H 1997 Drug Discov. Today 2 457

    Article  CAS  Google Scholar 

  22. Srivastava H K and Sastry G N 2012 J. Chem. Inf. Model. 52 3088

    Article  CAS  Google Scholar 

  23. Carlson H A 2002 Curr. Opin. Chem. Biol. 6 447

    Article  CAS  Google Scholar 

  24. Srivastava H K, Choudhury C and Sastry G N 2012 Med. Chem. 8 811

    Article  CAS  Google Scholar 

  25. Badrinarayan P and Sastry G N 2011 Comb. Chem. High Thr. Scr. 14 840

    Article  CAS  Google Scholar 

  26. Badrinarayan P and Sastry G N 2012 J. Mol. Graph. Modell. 34 89

    Article  CAS  Google Scholar 

  27. Badrinarayan P and Sastry G N 2014 PLoS One 9 e113773

    Article  Google Scholar 

  28. Reddy A S, Pati S P, Kumar P P, Pradeep H N and Sastry G N 2007 Curr. Protein Pept. Sci. 8 329

    Article  CAS  Google Scholar 

  29. Badrinarayan P and Sastry G N 2013 Curr. Pharm. Des. 19 4714

    Article  CAS  Google Scholar 

  30. Selick H E, Beresford A P and Tarbit M H 2002 Drug Discov. Today 7 109

    Article  Google Scholar 

  31. Kubinyi H 2003 Nat. Rev. Drug Discov. 2 665

    Article  CAS  Google Scholar 

  32. de Waterbeemd H V and Gifford E 2003 Nat. Rev. Drug Discov. 2 192

    Article  Google Scholar 

  33. Oprea T I, Davis A M, Teague S J and Leeson P D 2001 J. Chem. Inf. Comput. Sci. 41 1308

    Article  CAS  Google Scholar 

  34. Schrödinger Release 2015-4: Maestro, version 10.4, 2015, Schrödinger, LLC, New York, NY

  35. Dixon S L, Smondyrev A M, Knoll E H, Rao S N, Shaw D E and Friesner R A 2006 J. Comput. Aided. Mol. Des. 20 647

    Article  CAS  Google Scholar 

  36. Anuradha A, Trivelli X, Guérardel Y, Dover L G, Besra G S, Sacchettini J C, Reynolds R C, Coxon G D and Kremer L 2007 PLoS One 12 e1343

    Google Scholar 

  37. LigPrep, version, 2.5 2012 Schrödinger, LLC, New York, NY

  38. Glide, version, 5.8 2012, Schrödinger, LLC, New York, NY

  39. Friesner R A, Murphy R B, Repasky M P, Frye L L, Greenwood J R, Halgren T A, Sanschagrin P C and Mainz D T 2006 J. Med. Chem. 49 6177

    Article  CAS  Google Scholar 

  40. QikProp version 3.5 2012, Schrödinger, LLC, New York, NY

  41. Yang S Y 2010 Drug Discov. Today 15 444

    Article  CAS  Google Scholar 

  42. Saha S and Sastry G N 2015 J. Phys. Chem. B 119 11121

    Article  CAS  Google Scholar 

  43. Mahadevi A S and Sastry G N 2013 Chem. Rev. 113 2100

    Article  CAS  Google Scholar 

  44. Alhamadsheh M M, Waters N C, Sachdeva S, Lee P and Reynolds K A 2008 Bioorg. Med. Chem. Lett. 18 6402

    Article  CAS  Google Scholar 

  45. Guüzel Ö, Maresca A, Scozzafava A, Salman A, Balaban A T and Supuran C T 2009 J. Med. Chem. 52 4063

    Article  Google Scholar 

  46. Shu-Feng Z, Wang L, Di Y M, Xue C C, Duan W, Li C G and Li Y 2008 Curr. Med. Chem. 15 1981

    Article  Google Scholar 

  47. Fardis M, Jin H, Jabri S, Cai R Z, Mish M, Tsiang M and Kim C U 2006 Bioorg. Med. Chem. Lett. 16 4031

    Article  CAS  Google Scholar 

  48. Artico M, Santo R D, Costi R, Novellino E, Greco G, Massa S, Tramontano E, Marongiu M E, Montis A D and Colla P L 1998 J. Med. Chem. 41 3948

    Article  CAS  Google Scholar 

  49. Maurin C, Lion C, Bailly F, Touati N, Vezin H, Mbemba G, Mouscadet J F, Debyser Z, Witvrouw M and Cotelle P 2010 Bioorg. Med. Chem. 18 5194

    Article  CAS  Google Scholar 

  50. Porcari A R, Ptak R G, Borysko K Z, Breitenbach J M, Drach J C and Townsend L B 2000 J. Med. Chem. 43 2457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

CC thanks Department of Science and Technology (DST), New Delhi for financial assistance through INSPIRE fellowship. UDP thanks DAE-BRNS for financial assistance. GNS thanks CSIR, New Delhi for financial support in the form of XII five year project (GENESIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U DEVA PRIYAKUMAR.

Additional information

Supplementary Information (SI)

Scheme S1 showing the reference CmaA1 inhibitors, List S1 gives the details of the dataset download and preparation, table S1 giving the details (number of compounds matched, docking and fitness scores, etc.) of all the ligand-based pharmacophore models, table S2S5 giving the docking scores and QuickProp Descriptors of all screened compounds and List S2 giving the descriptions of the Quickprop descriptors are provided at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 702 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHOUDHURY, C., PRIYAKUMAR, U.D. & SASTRY, G.N. Dynamic ligand-based pharmacophore modeling and virtual screening to identify mycobacterial cyclopropane synthase inhibitors. J Chem Sci 128, 719–732 (2016). https://doi.org/10.1007/s12039-016-1069-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1069-1

Keywords

Navigation