Skip to main content
Log in

A novel dinuclear schiff base copper complex as an efficient and cost effective catalyst for oxidation of alcohol: Synthesis, crystal structure and theoretical studies

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

An environmentally friendly protocol is described for an economic, practical laboratory-scale oxidation of primary and secondary alcohols to aldehydes and ketones, using a bis-chloro-bridged binuclear Cu(II) complex [(HL)Cu(μ 2-Cl)2Cu(HL)]*1.5 CH3OH as catalyst. The catalyst was prepared in situ from commercially available reagents and is characterized by single crystal X-ray analysis, FT-IR, UV-visible spectra, mass spectrometry, and powder x-ray diffraction (PXRD). The geometry of the complex has been optimized using the B3LYP level of theory confirming the experimental data. Our results demonstrated well the efficiency, selectivity and stability of this new catalyst in the oxidation of alcohols in ethanol and tert-butyl hydroperoxide (tBuOOH) as a green solvent and oxidant, respectively. Turnover number and reusability have proven the high efficiency and relative stability of the catalyst.

A novel [(HL)Cu(μ2-Cl)2Cu(HL)]*1.5CH3OH complex was used as an efficient catalyst for the oxidation of alcohols. It was synthesized, using (E)-1-(((2-hydroxypropyl)imino)methyl)naphthalen-2-ol as a monoanionic and tridentate Schiff base ligand, and characterized by IR and UV-Visible spectroscopy and single-crystal X-ray analysis. The geometry of the complex was optimized using the B3LYP level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Busacca C A, Fandrick D R, Song J J and Senanayake C H 2011 Adv. Synth. Catal. 353 1825

    Article  CAS  Google Scholar 

  2. Arends W C E and Sheldon R A 2010 In Modern Oxidation Methods 2nd ed. J E Bäckvall (ed.) (Weinheim: Wiley–VCH) pp. 147–185

  3. Hoover J M, Steves J E and Stahl S S 2012 Nature Protocols 7 1161

    Article  CAS  Google Scholar 

  4. Fatiadi A J 1976 Synthesis 65

  5. Taylor R J K, Reid M, Foot J and Raw S A 2005 Acc. Chem. Res. 38 851

    Article  CAS  Google Scholar 

  6. Pfitzner K E and Moffatt J G 1963 J. Am. Chem. Soc. 85 3027

    Google Scholar 

  7. Mancuso A J, Brownfain D S and Swern D 1979 J. Org. Chem. 44 4148

    Article  CAS  Google Scholar 

  8. Tidwell T T 1990 Synthesis 857

  9. Moreno A L, Tejeda D C, Calbo J, Naeimi A, Bermejo F A, Ortí E and Pérez E M 2014 Chem. Commun. 50 9372

    Article  Google Scholar 

  10. Aguiló J, Naeimi A, Bofill R, Bunz H M, Llobet A, Escriche L, Sala X and Albrech M 2014 New J. Chem. 38 1980

    Article  Google Scholar 

  11. Rezaeifard A, Jafarpour M, Naeimi A and Haddad R 2012 Green Chem. 14 3386

    Article  CAS  Google Scholar 

  12. Rezaeifard A, Jafarpour M, Naeimi A and Salimi M 2012 Inorg. Chem. Commun. 15 230

    Article  CAS  Google Scholar 

  13. Rezaeifard A, Jafarpour M and Naeimi A 2011 Catal. Commun. 16 240

    Article  CAS  Google Scholar 

  14. Rezaeifard A, Jafarpour M, Naeimi A and Mohammadi K 2012 J. Mol. Catal. A: Chem. 357 141

    Article  CAS  Google Scholar 

  15. Rezaeifard A, Jafarpour M, Naeimi A and Kaafi S 2011 Catal. Commun. 12 761

    Article  CAS  Google Scholar 

  16. Bruker, 1999 SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

  17. Burla M C, Caliandro R, Camalli M, Carrozzini B, Cascarano G L, De Caro L, Giacovazzo C, Polidori G and Spagna R 2005 J. Appl. Crystallogr. 38 381

    Article  CAS  Google Scholar 

  18. Sheldrick G M 1997 SHELXL97. Program for crystal structure refinement. University of Gottingen, Germany

  19. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr , Vreven T., Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2004 Gaussian 03, Revision E.01 (Gaussian, Inc.: Wallingford, CT)

  20. Biegler-Konig F., AIM 2000 version 1.0, 1998 University of Applied. Science, Bielefeld, Germany

  21. Tarafder M, Kasbollah A, Crouse K, Ali A, Yamin B and Fun H K 2001 Polyhedron 20 2363

    Article  CAS  Google Scholar 

  22. Vafazadeh R, Khaledi B, Willis A C and Namazian M 2011 Polyhedron 30 1815

    Article  CAS  Google Scholar 

  23. Trzesowska-Kruszynska A 2012 J. Mol. Struc. 1017 72

    Article  CAS  Google Scholar 

  24. Thakurta S, Roy P, Rosair G, Gómez-García C J, Garribba E and Mitra S 2009 Polyhedron 28 695

    Article  CAS  Google Scholar 

  25. Hathaway B, Wilkinson G, Gillard R and McCleverty J 1987 In Comprehensive Coordination Chemistry Vol. 5 (Oxford: Pergamon)

  26. Addison A W, Rao T N, Reedijk J, van Rijn J and Verschoor G C 1984 J. Chem. Soc., Dalton Trans. 1349

  27. Bader R F 1991 Chem. Rev. 91 893

    Article  CAS  Google Scholar 

  28. Bader R F 1990 In Atoms in Molecules: A Quantum Theory (London: Oxford University Press)

  29. Raissi H, Yoosefian M, Mollania F and Khoshkhou S 2013 Struct. Chem. 24 123

    Article  CAS  Google Scholar 

  30. Raissi H, Yoosefian M and Mollania F 2012 Int. J. Quantum Chem. 112 2782

    Article  CAS  Google Scholar 

  31. Fazli M, Jalbout A, Raissi H, Ghiassi H and Yoosefian M 2009 J. Theor. Comput. Chem. 8 713

    Article  CAS  Google Scholar 

  32. Yoosefian M, Barzgari Z and Yoosefian J 2014 Struct. Chem. 25 9

    Article  CAS  Google Scholar 

  33. Raissi H, Khanmohammadi A, Yoosefian M and Mollania F 2013 Struct. Chem. 24 1121

    Article  CAS  Google Scholar 

  34. Raissi H, Yoosefian M, Mollania F, Farzad F and Nowroozi A R 2011 Comput. Theor. Chem. 966 299

    Article  CAS  Google Scholar 

  35. Meunier B 1992 Chem. Rev. 92 1411

    Article  CAS  Google Scholar 

  36. McGarrigle E M and Gilheany D G 2005 Chem. Rev. 105 1563

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to University of Jiroft and Vali-e-Asr University of Rafsanjan Research Council for their support on this work. We also thank Dr. Emilio Perez for his valuable comments to improve our project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ATENA NAEIMI.

Additional information

Supporting Information

Figures S1 and S2 and tables S1 and S2 are available at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 434 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NAEIMI, A., SAEEDNIA, S., YOOSEFIAN, M. et al. A novel dinuclear schiff base copper complex as an efficient and cost effective catalyst for oxidation of alcohol: Synthesis, crystal structure and theoretical studies. J Chem Sci 127, 1321–1328 (2015). https://doi.org/10.1007/s12039-015-0896-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0896-9

Keywords

Navigation