Skip to main content
Log in

Hydrogen adsorption of nitrogen-doped carbon nanotubes functionalized with 3d-block transition metals

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A systematic study of the most stable configurations, calculation of the corresponding binding and free energies of functionalized 3d transition metals (TMs) on (10,0) Single Walled Carbon Nanotube (SWCNT) doped with porphyrin-like nitrogen defects (4ND-CNxNT) using spin-polarized density functional theory (DFT) formalism with flavours of LDA and GGA exchange-correlation (XC) functionals has been made. A thorough analysis showed that the electronic and magnetic properties of SWCNT are dependent on the TMs absorbed wherein, the composite material TM/4ND-CNxNT can act as a medium for storing hydrogen at room temperature manifested through favourable adsorption energy.

A systematic study of the most stable configurations, the corresponding binding and free energies of functionalized 3d transition metal atoms on (10,0) Single Walled Carbon Nanotube (SWCNT) doped with porphyrin-like nitrogen defects (4ND-CNxNT) was carried out using spin-polarized density functional theory. A thorough analysis showed that the composite material TM/4ND-CNXNT can act as a medium for storing hydrogen at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Tasis D, Tagmatarchis N, Bianco A and Prato M 2006 Chem. Rev. 106 1105

    Article  CAS  Google Scholar 

  2. Zhao Y L and Stoddart J F 2009 Acc. Chem. Res. 42 1161

    Article  CAS  Google Scholar 

  3. Khabashesku V N, Billups W E and Margrave J L 2002 Acc. Chem. Res. 35 1087

    Article  CAS  Google Scholar 

  4. Niyogi S, Hamon M A, Hu H, Zhao B, Bhowmik P, Sen R, Itkis M E and Haddon R C 2002 Acc. Chem. Res. 35 1105

    Article  CAS  Google Scholar 

  5. Dong L, Craig M M, Khang D and Chen C J 2012 Nanotechnology 2012 1

    Google Scholar 

  6. Mananghaya M, Rodulfo E, Santos G N and Villagracia A R 2012 J. Nanotechnol. 2012 780815

  7. Sen R, Satishkumar B C, Govindaraj A, Harikumar K R, Renganathan M K and Rao C N R 1997 J. Mater. Chem. 12 2335

    Article  Google Scholar 

  8. Terrones M, Terrones H, Grobert N, Hsu W K, Zhu Y Q, Hare J P, Kroto H W, Walton D R, Ph Kohler-Redlich M W, Rühle M, Zhang J P and Cheetham A K 1999 Appl. Phys. Lett. 75 3932

    Article  CAS  Google Scholar 

  9. Czerw R, Terrones M, Charlier J C, Blasé X B, Foley R, Kamalakaran N, Grober H, Terrone D, Tekleab P M, Ajayan W, Blau M and Carrroll D L 2001 Nano. Lett. 1 457

    Article  CAS  Google Scholar 

  10. Terrones M, Ajayan P M, Banhart F, Blase X, Carroll D L, Charlier J C, Czerw R, Foley B, Grobert N, Kohler-Redlich P., Rühle M, Seeger T and Terrones H 2002 Appl. Phys. A Mater. Sci. Process 74 355

    Article  CAS  Google Scholar 

  11. Golberg D, Dorozhkin P S, Bando Y, Dong Z C, Tang C C, Uemura Y, Grobert N, Reyes M, Terrones H and Terrones M 2003 Appl. Phys. A Mater. Sci. Process 76 499

    Article  CAS  Google Scholar 

  12. Villalpando-Páez F, Romero A H, Mnǒz-Sandoval E, Martínez L M, Terrones H and Terrones M 2004 Chem. Phys. Lett. 386 137

    Article  Google Scholar 

  13. Suenage K, Johansson M P, Hellgren N, Broitman E, Wallenberg L R, Colliex C, Sundgren J and Hultman L 1999 Chem. Phys. Lett. 300 695

  14. Lim S H, Elim H I, Gao X Y, Wee A T S, Ji W, Lee J Y and Lin J 2006 Phys. Rev. B 73 045402

    Article  Google Scholar 

  15. Droppa Jr. R, Ribeiro C T M, Zanatta A R, dos Santos M C and Alvarez F 2004 Phys. Rev. B 69 045405

    Article  Google Scholar 

  16. Villalpando-Paez F, Zamudio A, Elias A L, Son H, Barros E, Chou B S G, Kim Y A, Muramatsu H, Hayashi T, Kong J, Terrones H, Dresselhaus G, Endo M, Terrones M and Dresselhaus M S 2006 Chem. Phys. Lett. 424 345

    Article  CAS  Google Scholar 

  17. Yu S S, Wen Q B, Zheng W T and Jiang Q Nanotechnology 18 165702

  18. Qiao L, Zheng W T, Xu H, Zhang L and Jiang Q 2007 J. Chem. Phys. 126 64702

    Article  Google Scholar 

  19. Min Y S, Bae E J, Kim U J, Lee E H, Park N J, Hwang C S and Park W J 2008 Appl. Phys. Lett. 93 043113

    Article  Google Scholar 

  20. Rocha A R, Rossi M, Fazzio A and da Silva A J R 2008 Phys. Rev. Lett. 100 176803

    Article  CAS  Google Scholar 

  21. Li Y F, Zhou Z and Wang L B 2008 J. Chem. Phys. 129 104703

    Article  CAS  Google Scholar 

  22. Gong K P, Du F, Xia Z X, Durstock M and Dai L M Science 323 760

  23. Ayala P, Arenal R, Rümmeli M, Rubio A and Pichler T 2010 Carbon 48 575

    Article  CAS  Google Scholar 

  24. Yoon H, Ko S and Jang J 2007 Chem. Commun. 14 1468

    Article  Google Scholar 

  25. Shao Y, Sui J, Yin G and Gao Y 2008 Appl. Catal. B 78 89

    Article  Google Scholar 

  26. Su F B, Tian Z Q, Poh C K, Wang Z, Lim S H, Liu Z L and Lin J Y 2010 Chem. Mater. 27 832

    Article  Google Scholar 

  27. Li X G, Park S and Popov B N 2010 Power Source 195 445

    Article  CAS  Google Scholar 

  28. Shao Y Y, Liu J, Wang Y and Lin Y H 2009 J. Mater. Chem. 19 46

    Article  CAS  Google Scholar 

  29. Gregory G, Wildgoose C, Banks E and Richard G C 2006 Small 2 182

    Article  Google Scholar 

  30. Georgakilas V, Gournis D, Tzizios V, Pasquato L, Guldi D M and Prato M 2007 J. Mater. Chem. 17 2679

    Article  CAS  Google Scholar 

  31. White R J, Luque R, Budairn V L, Clark J H and Macquarrie D J 2009 Chem. Soc. Rev. 38 481

    Article  CAS  Google Scholar 

  32. Yue B, Ma Y W, Tao H S, Yu L S, Jian G Q, Wang X Z, Wang X S, Lu Y N and Hu Z 2008 J. Mater. Chem. 18 1747

    Article  CAS  Google Scholar 

  33. Jiang J S, Ma Y W, Jian G Q, Tao H S, Wang X Z, Fan Y N, Lu Y N, Hu Z and Chen Y 2009 Adv. Mater. 21 4953

    Article  CAS  Google Scholar 

  34. Zhou Y, Pasquareli R, Holme T, Berry J, Ginley D and O’Hayre R 2009 J. Mater. Chem. 19 7830

    Article  CAS  Google Scholar 

  35. Lepró X, Terrés E, Vega-Cantú Y, Rodríguez-Macías F, Muramatsu H, Kim Y A, Hayahsi T, Endo M, Torres M and Terrones M 2008 Chem. Phys. Lett. 463 124

    Article  Google Scholar 

  36. Chen Z, Higgins D, Tao H S, Hsu R S and Chen Z W 2009 J. Phys. Chem. C 113 21008

    Article  CAS  Google Scholar 

  37. Sadek A Z, Zhang C, Hu Z, Partridge J G, McCulloch D G, Wlodarski W and Kalantar-zadeh K 2010 J. Phys. Chem. C 114 238

    Article  CAS  Google Scholar 

  38. Yang S H, Shin W H, Lee J W, Kim H S, Kang J K and Kim Y K 2007 Appl. Phys. Lett. 90 013103

    Article  Google Scholar 

  39. Li Y H, Hung T H and Chen C W 2009 Carbon 47 850

    Article  CAS  Google Scholar 

  40. Feng H, Ma J and Hu Z 2010 J. Mater. Chem. 20 1702

    Article  CAS  Google Scholar 

  41. Titov A V, Zapol P, Král P, Liu D J, Iddir H, Baishya K and Curtiss L A 2009 J. Phys. Chem. C 113 21629

    Article  CAS  Google Scholar 

  42. An W and Turner C H 2009 J. Phys. Chem. C 113 7069

    Article  CAS  Google Scholar 

  43. Stoyanov S, Titov A V and Kral P 2009 Coord. Chem. Rev. 253 2852

    Article  CAS  Google Scholar 

  44. Delley B 1990 J. Chem. Phys. 92 508

    Article  CAS  Google Scholar 

  45. Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    Article  CAS  Google Scholar 

  46. Perdew J P and Wang Y 1992 Phys. Rev. B 45 (23) 13244

    Article  Google Scholar 

  47. Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188

    Article  Google Scholar 

  48. Durgun E, Dag S, Bagci V, Gulseren T and Yildirim C S 2003 Phys. Rev. B 67 201401

    Article  Google Scholar 

  49. Durgun E, Dag S, Ciraci S and Gulseren O 2004 J. Phys. Chem. B 108 575

    Article  CAS  Google Scholar 

  50. Mananghaya M, Rodulfo E, Santos G N and Villagracia A R and Ladines A N 2012 J. Nanomater. 2012 104891

  51. Mananghaya M 2014 Bull. Korean Chem. Soc. 35 (1) 253

    Article  Google Scholar 

  52. Mananghaya M 2012 J. Korean Chem. Soc. 56 (1) 34

    Article  CAS  Google Scholar 

  53. Mananghaya M 2014 J. Chem. Sci. 126 1737

    Article  CAS  Google Scholar 

  54. Hirshfeld F L 1997 Theor. Chim. Acta. 44 129

    Article  Google Scholar 

  55. Zhao J, Ding Y, Wang X G, Cai Q and Wang X Z 2010 Diamond Related. Mater. 20 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MICHAEL R MANANGHAYA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MANANGHAYA, M.R. Hydrogen adsorption of nitrogen-doped carbon nanotubes functionalized with 3d-block transition metals. J Chem Sci 127, 751–759 (2015). https://doi.org/10.1007/s12039-015-0831-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0831-0

Keywords

Navigation