Skip to main content

Advertisement

Log in

Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions?

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Caspases are cysteine proteases that are important regulators of programmed cell death in animals. Two novel relatives to members of the caspase families metacaspases and paracaspase have been discovered. Metacaspase type-1 was identified in Acanthamoeba castellanii, an opportunistic protozoan parasite that causes severe diseases in humans. Paracaspase was found in the non-pathogenic protozoan Dictyostelium discoideum. Since their discovery in Acanthamoeba and Dictyostelium, metacaspases and paracaspases have remained poorly characterized. At present we do not have sufficient data about the molecular function of these caspase-like proteins or their role, if any, in programmed cell death. How these caspase proteins function at the molecular level is an important area of study that will provide insight into their potential for treatment therapies against Acanthamoeba infection and other similar parasitic protozoan. Additionally, finding the molecular functions of these caspase-like proteins will provide information concerning their role in more complex organisms.The aim of this article was to review recent discoveries about metacaspases and paracaspases as regulators of apoptotic and non-apoptotic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambit A, Fasel N, Coombs GH and Mottram JC 2008 An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ. 15 113–122

    Article  CAS  PubMed  Google Scholar 

  • Anderson IJ, Watkins RF, Samuelson J, Spencer DF, Majoros WH, Gray MW and Loftus BJ 2005 Gene Discovery in the Acanthamoeba castellani Genome. Protist 156 203–214

    Article  PubMed  Google Scholar 

  • Aravind L and Koonin EV 2002 Classification of the caspase-hemoglobinase fold: detection of new families and implications for the origin of the eukaryotic separins. Proteins 46 355–367

    Article  CAS  PubMed  Google Scholar 

  • Arends MJ and Wyllie AH 1991 Apoptosis: mechanisms and roles in pathology. Int. Rev. Exp. Pathol. 32 223–254

    Article  CAS  PubMed  Google Scholar 

  • Arya R, Bhattacharya A and Saini SK 2008 Dictyostelium discoideum – a promising expression system for the production of eukaryotic proteins. FASEB J. 22 4055–4066

    Article  CAS  PubMed  Google Scholar 

  • Bär PR 1996 Apoptosis – the cell's silent exit. Life Sci. 59 369–378

    Article  PubMed  Google Scholar 

  • Bidle KD and Falkowski PG 2004 Cell death in planktonic, photosynthetic microorganisms. Nat. Rev. Microbiol. 2 643–655

    Article  CAS  PubMed  Google Scholar 

  • Bouchier-Hayes L, Oberst A, McStay GP, Connell S, Tait SW, Dillon CP, Flanagan JM, Beere HM, et al. 2009 Characterization of cytoplasmic caspase-2 activation by induced proximity. Mol. Cell 35 830–840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao Y, Huang S, Dai B, Zhu Z, Lu H, Dong L, Cao Y, Wang Y, et al. 2009 Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genet. Biol. 46 183–189

    Article  CAS  PubMed  Google Scholar 

  • Carmona-Gutierrez D, Frohlich KU, Kroemer G and Madeo F 2010 Metacaspases are caspases. Doubt no more. Cell Death Differ. 377–378

  • Castanys-Muñoz E, Brown E, Coombs GH and Mottram JC 2012 Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis. 3 e385

    Article  PubMed Central  PubMed  Google Scholar 

  • Choi CJ and Berges JA 2013 New types of metacaspases in phytoplankton reveal diverse origins of cell death proteases. Cell Death Dis. 4 ARTN e490. doi 10.1038/cddis.2013.21

  • Clark DW and Niederkorn JY 2006 The pathophysiology of Acanthamoeba keratitis. Trends Parasitol. 22 175–180

    Article  Google Scholar 

  • Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL and Epple P 2010 Arabidopsis type I metacaspases control cell death. Science 330 1393–1397

    Article  CAS  PubMed  Google Scholar 

  • Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J, Sun L, Chen ZJ, et al. 2008 T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nat. Immunol. 9 263–271

    Article  CAS  PubMed  Google Scholar 

  • Di Gregorio C, Rivasi F, Mongiardo N, De Rienzo B, Wallace S and Visvesvara GS 1992 Acanthamoeba meningoencephalitis in a patient with acquired immunodeficiency syndrome. Arch. Pathol. Lab. Med. 116 1363–1365

    PubMed  Google Scholar 

  • Dufner A and Schamel WW 2011 B cell antigen receptor-induced activation of an RAK4-dependent signaling pathway revealed by a MALT1-IRAK4 double knockout mouse model. Cell Commun. Signal. 9 6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, et al. 2005 The genome of the social amoeba Dictyostelium discoideum. Nature 435 43–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Escalante R and Vicente JJ 2000 Dictyostelium discoideum: a model system for differentiation and patterning. Int. J. Dev. Biol. 44 819–835

    CAS  PubMed  Google Scholar 

  • Fan TJ, Han LH, Cong RS and Liang J 2005 Caspase family proteases and apoptosis. Acta Biochim. Biophys. Sin. (Shanghai) 37 719–727

    Article  CAS  Google Scholar 

  • Ferch U, Kloo B, Gewies A, Pfänder V, Düwel M, Peschel C, Krappmann D and Ruland J 2009 Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 206 2313–2320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flower TR, Chesnokova LS, Froelich CA, Dixon C and Witt SN 2005 Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson's disease. J. Mol. Biol. 351 1081–1100

    Article  CAS  PubMed  Google Scholar 

  • Gaudet P, Pilcher KE, Fey P and Chisholm RL 2007 Transformation of Dictyostelium discoideum with plasmid DNA. Nat. Protoc. 2 1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez IJ, Desponds C, Schaff C, Mottram JC and Fasel N 2007 Leishmania major metacaspase can replace yeast metacaspase in programmed cell death and has arginine-specific cysteine peptidase activity. Int. J. Parasitol. 37 161–172

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS 2000 The molecular perspective: caspases. Oncologist. 5 435–436

    Article  CAS  PubMed  Google Scholar 

  • He C and Klionsky DJ 2009 Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43 67–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helms MJ, Ambit A, Appleton P, Tetley L, Coombs GH and Mottram JC 2006 Bloodstream form Trypanosoma brucei depend upon multiple metacaspases associated with RAB11-positive endosomes. J. Cell Sci. 119 1105–1117

    Article  CAS  PubMed  Google Scholar 

  • Ivanovska I and Hardwick JM 2005 Viruses activate a genetically conserved cell death pathway in a unicellular organism. J. Cell Biol. 170 391–399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kawadler H, Gantz MA, Riley JL and Yang X 2008 The paracaspase MALT1 controls caspase-8 activation during lymphocyte proliferation. Mol. Cell 31 415–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ and Gray MW 2005 The tree of euokaryotes. Trends Eco1. Evo1. 20 670–676

    Article  Google Scholar 

  • Kerr JFR, Wyllie AH and Currie AR 1972 Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26 239–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan NA 2003 Pathogenesis of Acanthamoeba infections. Microb. Pathog. 34 277–285

    Article  PubMed  Google Scholar 

  • Koonin EV and Aravind L 2002 Origin and evolution of eukaryotic apoptosis: the bacterial connection. Cell Death Differ. 9 394–404

    Article  CAS  PubMed  Google Scholar 

  • Kosec G, Alvarez VE, Agüero F, Sánchez D, Dolinar M, Turk B, Turk V and Cazzulo JJ 2006 Metacaspases of Trypanosoma cruzi: possible candidates for programmed cell death mediators. Mol. Biochem. Parasitol. 145 18–28

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Mariño G and Levine B 2010 Autophagy and the integrated stress response. Mol. Cell 40 280–293

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar R and Lloyd D 2002 Recent advances in the treatment of Acanthamoeba Keratitis. Clin. Infect. Dis. 35 43

    Article  Google Scholar 

  • Lam D, Levraud J, Luciani M and Golstein P 2007 Autophagic or necrotic cell death in the absence of caspase and bcl-2 family members. Biochem. Bioph. Res. 363 536–541

    Article  CAS  Google Scholar 

  • Lamkanfi M, Declercq W, Kalai M, Saelens X and Vandenabeele P 2002 Alice in caspaseland. A phylogenetic analysis of caspases from worm to man. Cell Death Differ. 9 358–361

    Article  CAS  PubMed  Google Scholar 

  • Lamkanfi M, Festjens N, Declercq W, VandenBerghe T and Vandenabeele P 2007 Caspases in cell survival, proliferation and differentiation. Cell Death Differ. 4 44–55

    Article  Google Scholar 

  • Launay S, Hermine O, Fontenay M, Kroemer G, Solary E and Garrido C 2005 Vital functions for lethalcaspases. Oncogene. 24 5137–5148

    Article  CAS  PubMed  Google Scholar 

  • Laverrière M, Cazzulo JJ and Alvarez VE 2012 Antagonic activities of Trypanosoma cruzi metacaspases affect the balance between cell proliferation, death and differentiation. Cell Death Differ. 19 1358–1369

    Article  PubMed Central  PubMed  Google Scholar 

  • Lavrik IN, Golks A and Krammer PH 2005 Caspases: pharmacological manipulation of cell death. J. Clin. Invest. 115 2665–2672

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Chat L, Sinden RE and Dessens JT 2007 The role of metacaspase 1 in Plasmodium berghei development and apoptosis. Mol. Biochem. Parasitol. 153 41–47

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee RE, Brunette S, Puente LG and Megeney LA 2010 Metacaspase Yca1 is required for clearance of insoluble protein aggregates. PNAS Early Edition. doi:10.1073/pnas.1006610107

    Google Scholar 

  • Lee N, Gannavaram S, Selvapandiyan A and Debrabant A 2007 Characterization of metacaspases with trypsin-like activity and their putative role in programmed cell death in the protozoan parasite Leishmania. Eukaryot Cell. 6 1745–1757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leitsch D, Köhsler M, Marchetti-Deschmann M, Deutsch A, Allmaier G, Duchêne M and Walochnik J 2010 Major role for cysteine proteases during the early phase of Acanthamoeba castellanii encystment. Eukaryot Cell. 9 611–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lim HW, Kim SJ, Park EH and Lim CJ 2007 Overexpression of a metacaspase gene stimulates cell growth and stress response in Schizosaccharomyces pombe. Can. J. Microbiol. 53 1016–1023

    Article  CAS  PubMed  Google Scholar 

  • MacFarlane M and Williams AC 2004 Apoptosis and disease: a life or death decision. EMBO Rep. 5 674–678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, et al. 2002 A caspase-related protease regulates apoptosis in yeast. Mol. Cell 9 911–917

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Cherukuri PF, DeWeese-Scott C, Geer LY, Gwadz M, He S, Hurwitz DI, et al. 2005 CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res. 33 D192–D196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marciano-Cabral F and Cabral G 2003 Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16 273–307

    Article  PubMed Central  PubMed  Google Scholar 

  • Meslin B, Barnadas C, Boni V, Latour C, De Monbrison F, Kaiser K and Picot S 2007 Features of apoptosis in Plasmodium falciparum erythrocytic stage through a putative role of PfMCA1 metacaspase-like protein. J. Infect. Dis. 95 1852–1859

    Article  Google Scholar 

  • Meslin B, Beavogui AH, Fasel N and Picot S 2011 Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death. PLoS ONE 6 e23867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon E, Chung D, Hong Y and Kong H 2008 Characterization of a serine proteinase mediating encystation of Acanthamoeba. Eucaryot cell. 7 1513–1517

    Article  CAS  Google Scholar 

  • Moon E, Kim J, Xuan Y, Yun Y, Kang SW, Lee YS, Ahn T, Hong Y, et al. 2009 Construction of EST database for comparative gene studies of Acanthamoeba. Korean J. Parasitol. 47 103–107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mottram JC, Helms MJ, Coombs GH and Sajid M 2003 Clan CD cysteine peptidases of parasitic protozoa. Trends Parasitol. 19 182–187

    Article  CAS  PubMed  Google Scholar 

  • Noegel AA and Schleicher M 2000 The actin cytoskeleton of Dictyostelium: a story told by mutants. J. Cell Sci. 113 759–766

    CAS  PubMed  Google Scholar 

  • Okada H and Mak TW 2004 Pathways of apoptotic and non-apoptotic death in tumour cells. Nat. Rev. Cancer 4 592–603

    Article  CAS  PubMed  Google Scholar 

  • Porter AG and Jänicke RU 1999 Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6 99–104

    Article  CAS  PubMed  Google Scholar 

  • Proto WR, Castanys-Munoz E, Black A, Tetley L, Moss CX, Juliano L, Coombs GH and Mottram JC 2011 Trypanosoma brucei metacaspase 4 is a pseudopeptidase and a virulence factor. J. Biol. Chem. 286 39914–39925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raper KB 1935 Dictyostelium discoideum, A new species of slime mold from decaying forest leaves. J. Agric. Res. 50 135–147

    Google Scholar 

  • Richie DL, Miley MD, Bhabhra R, Robson GD, Rhodes JC and Askew DS 2007 The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress. Mol. Microbiol. 63 591–604

    Article  CAS  PubMed  Google Scholar 

  • Roisin-Bouffay C, Luciani MF, Klein G, Levraud JP, Adam M and Golstein P 2004 Developmental cell death in Dictyosteliumdoes not require paracaspase. J. Biol. Chem. 79 11489–114894

    Article  Google Scholar 

  • Saheb E, Trzyna W and Bush J 2013a An Acanthamoeba castellanii metacaspase associates with the contractile vacuole and functions in osmoregulation. Exp. Parasitol. 133 314–326

    Article  CAS  PubMed  Google Scholar 

  • Saheb E, Biton I, Maringer K and Bush J 2013b A functional connection of Dictyostelium paracaspase with the contractile vacuole and a possible partner with the vacuolar proton ATPase. J. Biosci. 38 1–13

  • Schuster FL and Visvesvara GS 2004 Free-living amoebae as opportunistic and nonopportunistic pathogens of humans and animals. Int. J. Parasitol. 34 1–27

    Article  Google Scholar 

  • Sperandio S, de Belle I and Bredesen DE 2000 An alternative, nonapoptotic form of programmed cell death. Proc. Natl. Acad. Sci. U.S.A. 97 14376–14381

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sundström JF, Vaculova A, Smertenko AP, Savenkov EI, Golovko A, Minina E, Tiwari BS, Rodriguez-Nieto S, Zamyatnin AA Jr, Välineva T, Saarikettu J, Frilander MJ, Suarez MF, Zavialov A, Ståhl U, Hussey PJ, Silvennoinen O, Sundberg E, Zhivotovsky B, Bozhkov PV. 2009 Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat. Cell Biol. 11 1347–1354

  • Szallies A, Kubata BK and Duszenko MA 2002 metacaspase of Trypanosoma brucei causes loss of respiration competence and clonal death in the yeast Saccharomyces cerevisiae. FEBS Lett. 517 144–150

    Article  CAS  PubMed  Google Scholar 

  • Timmer JC and Salvesen GS 2007 Caspase substrates. Cell Death Differ. 14 66–72

    Article  CAS  PubMed  Google Scholar 

  • Tong X, Drapkin R, Yalamanchill R, Mosialos G and Kieff E 1995 The Epstein-Barr virus nuclear protein 2 acidic domain forms a complex with a novel cellular coactivator that can interact with TFIIE. Mol. Cell. Biol. 15 4735–474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trzyna WC, Legras XD and Cordingley JS 2008 A type-1 metacaspase from Acanthamoeba castellanii. Microbiol. Res. 163 414–423

    Article  CAS  PubMed  Google Scholar 

  • Tsiatsiani L, Van Breusegem F, Gallois P, Zavialov A, Lam E and Bozhkov PV 2011 Metacaspases. Cell Death Differ. 18 1279–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uren AG, O'Rourke K, Aravind LA, Pisabarro MT, Seshagiri S, Koonin EV and Dixit VM 2000 Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6 961–967

    CAS  PubMed  Google Scholar 

  • Vercammen D, Belenghi B, van de Cotte B, Beunens T, Gavigan JA, De Rycke R, Brackenier A, Inzé D, et al. 2006 Serpin1of Arabidopsis thaliana is a suicide inhibitor for metacaspase 9. J. Mol. Biol. 364 625–636

    Article  CAS  PubMed  Google Scholar 

  • Vercammen D, Declercq W, Vandenabeele P and Breusegem FV 2007 Are metacaspases caspases? J. Cell Biol. 179 375–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vercammen D, van de Cotte B, De Jaeger G, Eeckhout Casteels DP, Vandepoele K, Vandenberghe I, VanBeeumen J, Inzé D, et al. 2004 Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J. Biol. Chem. 279 45329–45336

    Article  CAS  PubMed  Google Scholar 

  • Vucic D and Dixit VM 2009 Masking MALT1: the paracaspase's potential for cancertherapy. J. Exp. Med. 206 2309–2312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe N and Lam E 2005 Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death inyeast. J. Biol. Chem. 280 14691–14699

    Article  CAS  PubMed  Google Scholar 

  • Watanabe N and Lam E 2011 Arabidopsismetacaspase 2d is a positive mediator ofcell death induced during biotic and abiotic stresses. Plant J. 66 969–982

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Aittomäki S, Pesu M, Carter K, Saarinen J, Kalkkinen N, Kieff E and Silvennoinen O 2002 Identification of p100 as a coactivator for STAT6 that bridges STAT6 with RNA polymerase II. EMBO J. 21 4950–4958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zalila H, González IJ, El-Fadili AK, Delgado MB, Desponds C, Schaff C and Fasel N 2011 Processing of metacaspase into a cytoplasmic catalytic domain mediating cell death in Leishmania major. Mol. Microbiol. 79 222–239

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zanetti S, Fiori P, Pinna A, Usai S, Carta F and Fadda G 1995 Susceptibility of Acanthamoeba castellanii to contact lens disinfecting solutions. Antimicrob. Agents Ch. 39 1596–1598

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We greatly appreciate Dr Marinelle Ringer for her assistance in proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bush.

Additional information

Corresponding editor: Sudha Bhattacharya

[Saheb E, Trzyna W and Bush J 2014 Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions? J. Biosci. 39 1–8] DOI 10.1007/s12038-014-9486-0

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saheb, E., Trzyna, W. & Bush, J. Caspase-like proteins: Acanthamoeba castellanii metacaspase and Dictyostelium discoideum paracaspase, what are their functions?. J Biosci 39, 909–916 (2014). https://doi.org/10.1007/s12038-014-9486-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9486-0

Keywords

Navigation