Skip to main content

Advertisement

Log in

Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Human HYPK (Huntingtin Yeast-two-hybrid Protein K) is an intrinsically unstructured chaperone-like protein with no sequence homology to known chaperones. HYPK is also known to be a part of ribosome-associated protein complex and present in polysomes. The objective of the present study was to investigate the evolutionary influence on HYPK primary structure and its impact on the protein’s function. Amino acid sequence analysis revealed 105 orthologs of human HYPK from plants, lower invertebrates to mammals. C-terminal part of HYPK was found to be particularly conserved and to contain nascent polypeptide-associated alpha subunit (NPAA) domain. This region experiences highest selection pressure, signifying its importance in the structural and functional evolution. NPAA domain of human HYPK has unique amino acid composition preferring glutamic acid and happens to be more stable from a conformational point of view having higher content of α-helices than the rest. Cell biology studies indicate that overexpressed C-terminal human HYPK can interact with nascent proteins, co-localizes with huntingtin, increases cell viability and decreases caspase activities in Huntington’s disease (HD) cell culture model. This domain is found to be required for the chaperone-like activity of HYPK in vivo. Our study suggested that by virtue of its flexibility and nascent peptide binding activity, HYPK may play an important role in assisting protein (re)folding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids. Res. 25 3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arnesen T, Starheim KK, Van Damme P, Evjenth R, Dinh H, Betts MJ, Ryningen A, Vandekerckhove J, et al. 2010 The chaperone-like protein HYPK acts together with NatA in cotranslational N-terminal acetylation and prevention of Huntingtin aggregation. Mol. Cell. Biol. 30 1898–1909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bahar I, Kaplan M and Jernigan RL 1997 Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches. Proteins 29 292–308

  • Banerjee R, Roy A, Ahmad F, Das S and Basak S 2012 Evolutionary patterning of hemagglutinin gene sequence of 2009 H1N1 pandemic. J. Biomol Struct Dyn 29 733–742

    Article  CAS  PubMed  Google Scholar 

  • Brown CJ, Johnson AK and Daughdrill GW 2010 Comparing models of evolution for ordered and disordered proteins. Mol. Biol. Evol. 27 609–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhury KR, Raychaudhuri S and Bhattacharyya NP 2012 Identification of HYPK-interacting proteins reveals involvement of HYPK in regulating cell growth, cell cycle, unfolded protein response and cell death. PLoS One 7 e51415

    Article  PubMed Central  PubMed  Google Scholar 

  • Das S and Bhattacharyya NP 2014 Transcription Regulation of HYPK by Heat Shock Factor 1. PLoS One 9 e85552

    Article  PubMed Central  PubMed  Google Scholar 

  • Dasgupta A, Banerjee R, Das S and Basak S 2012 Evolutionary perspective on the origin of Haitian cholera outbreak strain. J Biomol. Struct. Dyn. 30 338–346

    Article  CAS  PubMed  Google Scholar 

  • Eggers DK, Welch WJ and Hansen WJ 1997 Complexes between nascent polypeptides and their molecular chaperones in the cytosol of mammalian cells. Mol. Biol. Cell. 8 1559–1573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Frishman D and Argos P 1996 Incorporation of non-local interactions in protein secondary structure prediction from the amino acid sequence. Protein Eng. 9 133–142

    Article  CAS  PubMed  Google Scholar 

  • Golovanov AP, Hautbergue GM, Wilson SA and Lian LY 2004 A simple method for improving protein solubility and long-term stability. J. Am. Chem. Soc. 126 8933–8939

    Article  CAS  PubMed  Google Scholar 

  • Gromiha MM and Selvaraj S 1999 Influence of medium and long-range interactions in protein folding. Prep. Biochem. Biotechnol. 29 339–351

  • Gupta R, Kasturi P, Bracher A, Loew C, Zheng M, Villella A, Garza D, Hartl FU, et al. 2011 Firefly luciferase mutants as sensors of proteome stress. Nat. Methods 8 879–884

    Article  CAS  PubMed  Google Scholar 

  • Jeffery CJ 2009 Moonlighting proteins--an update. Mol. Biosyst. 5 345–350

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S and Madden TL 2008 NCBI BLAST: a better web interface. Nucleic Acids Res. 36 W5–W9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kimura M 1980 A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16 111–120

  • Kimura M 1983 The neutral theory of molecular evolution (Cambridge, UK: Cambridge University Press)

    Book  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM 1993 PROCHECK - a program to check the stereochemical quality of protein structures. J. App. Cryst. 26 283–291

    Article  CAS  Google Scholar 

  • Lesk AM and Chothia C 1980 How different amino acid sequences determine similar protein structures: the structure and evolutionary dynamics of the globins. J. Mol. Biol. 136 225–270

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Zhou W and Landweber LF 2006 SWAKK: a web server for detecting positive selection in proteins using a sliding window substitution rate analysis. Nucleic Acids Res. 34 W382–W384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maiorov VN and Crippen GM 1995 Size-independent comparison of protein three-dimensional structures. Proteins 22 273–283

    Article  CAS  PubMed  Google Scholar 

  • Majumder P, Chattopadhyay B, Mazumder A, Das P and Bhattacharyya NP 2006 Induction of apoptosis in cells expressing exogenous Hippi, a molecular partner of huntingtin-interacting protein Hip1. Neurobiol. Dis. 22 242–256

  • Mukhopadhyay P, Basak S and Ghosh TC 2007 Nature of selective constraints on synonymous codon usage of rice differs in GC-poor and GC-rich genes. Gene 400 71–81

    Article  CAS  PubMed  Google Scholar 

  • Otto H, Conz C, Maier P, Wolfle T, Suzuki CK, Jeno P, Rucknagel P, Stahl J, et al. 2005 The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. Proc. Natl. Acad. Sci. USA 102 10064–10069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pechmann S, Willmund F and Frydman J 2013 The ribosome as a hub for protein quality control. Mol. Cell. 49 411–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Preissler S and Deuerling E 2012 Ribosome-associated chaperones as key players in proteostasis. Trends Biochem. Sci. 37 274–283

    Article  CAS  PubMed  Google Scholar 

  • Pronk S, Pall S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, et al. 2013 GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29 845–854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, et al. 2009 Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77 89–99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raychaudhuri S, Choudhury KR, Palchoudhuri S, Chopra S, Bhattacharyya NP and Mukhopadhyay D 2011 Spectroscopic studies reveal conformational flexibility of intrinsically unstructured protein HYPK. J. Biophys. Chem. 2 434–442

    Article  CAS  Google Scholar 

  • Raychaudhuri S, Dey S, Bhattacharyya NP and Mukhopadhyay D 2009 The role of intrinsically unstructured proteins in neurodegenerative diseases. PLoS One 4 e5566.

    Article  PubMed Central  PubMed  Google Scholar 

  • Raychaudhuri S, Loew C, Korner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F and Hartl FU 2014 Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156 975–985

    Article  CAS  PubMed  Google Scholar 

  • Raychaudhuri S, Majumder P, Sarkar S, Giri K, Mukhopadhyay D and Bhattacharyya NP 2008a Huntingtin interacting protein HYPK is intrinsically unstructured. Proteins 71 1686–1698

  • Raychaudhuri S, Sinha M, Mukhopadhyay D and Bhattacharyya NP 2008b HYPK, a Huntingtin interacting protein, reduces aggregates and apoptosis induced by N-terminal Huntingtin with 40 glutamines in Neuro2a cells and exhibits chaperone-like activity. Hum. Mol. Genet. 17 240–255

    Article  CAS  PubMed  Google Scholar 

  • Saitou N and Nei M 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 406–425

    CAS  PubMed  Google Scholar 

  • Sakurai H, Sawai M, Ishikawa Y, Ota A and Kawahara E 2014 Heat shock transcription factor HSF1 regulates the expression of the Huntingtin-interacting protein HYPK. Biochim. Biophys. Acta. 1840 1181–1187

    Article  CAS  PubMed  Google Scholar 

  • Servant F, Bru C, Carrere S, Courcelle E, Gouzy J, Peyruc D and Kahn D 2002 ProDom: automated clustering of homologous domains. Brief. Bioinform. 3 246–251

  • Sinha NK, Roy A, Das B, Das S and Basak S 2009 Evolutionary complexities of swine flu H1N1 gene sequences of 2009. Biochem. Biophys. Res. Commun. 390 349–351

    Article  CAS  PubMed  Google Scholar 

  • Thomas MA, Weston B, Joseph M, Wu W, Nekrutenko A and Tonellato PJ 2003 Evolutionary dynamics of oncogenes and tumor suppressor genes: higher intensities of purifying selection than other genes. Mol. Biol. Evol. 20 964–968

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tompa P and Csermely P 2004 The role of structural disorder in the function of RNA and protein chaperones. FASEB J. 18 1169–1175

  • Tompa P, Szasz C and Buday L 2005 Structural disorder throws new light on moonlighting. Trends Biochem. Sci. 30 484–489

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN 2011 Flexible nets of malleable guardians: intrinsically disordered chaperones in neurodegenerative diseases. Chem. Rev. 111 1134–1166

    Article  CAS  PubMed  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE and Berendsen HJ 2005 GROMACS: fast, flexible, and free. J. Comput. Chem. 26 1701–1718

    Article  Google Scholar 

  • Wang M, Zhang X, Zhao H, Wang Q and Pan Y 2010 Comparative analysis of vertebrate PEPT1 and PEPT2 genes. Genetica 138 587–599

    Article  CAS  PubMed  Google Scholar 

  • Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF and Jones DT 2004 Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 337 635–645

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the computational facility of DIC and Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta. SR is supported by the DBT–Ramalingaswami Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Swasti Raychaudhuri or Nitai P Bhattacharyya.

Additional information

Corresponding editor: Veena K Parnaik

[Raychaudhuri S, Banerjee R, Mukhopadhyay S and Bhattacharyya NP 2014 Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity. J. Biosci. 39 1–14] DOI 10.1007/s12038-014-9442-z

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/sep2014/supp/Raychaudhuri.pdf

Swasti Raychaudhuri and Rachana Banerjee contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.39 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raychaudhuri, S., Banerjee, R., Mukhopadhyay, S. et al. Conserved C-terminal nascent peptide binding domain of HYPK facilitates its chaperone-like activity. J Biosci 39, 659–672 (2014). https://doi.org/10.1007/s12038-014-9442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9442-z

Keywords

Navigation