Skip to main content
Log in

Biophysical Aspect of Huntingtin Protein During polyQ: An In Silico Insight

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a neurodegenerative disorder that is caused by an abnormal elongation of the polyglutamine (polyQ) chain in the Huntington (Htt) protein. At present, the normal function of Htt of neurons as well as the mechanism by which selective neurodegeneration is caused by the expanded polyQ chain in Htt remains ambiguous. A gain of function as a result of the elongated polyQ chain can lead to abnormal interaction of the Htt protein with its interacting partners, thereby resulting in the neuropathological changes seen in the Huntington’s disease. Recent research indicates protein kinase C and casein kinase substrate in neurons protein 1 (PACSIN1) as one of the interacting partners of Htt protein. It has proven experimentally that the mutant Htt and PACSIN1 formed aggregates in the cytoplasm. This aggregation is believed to be a cause for Huntington’s disease. In our study, we performed in silico investigations to predict the biomolecular mechanism of Htt/PACSIN1 interaction that could be one of the major triggers of the disease. Biomolecular interaction and molecular dynamics simulation analysis were performed to understand the dynamic behavior of native and mutant structures at the atomic level. Mutant Htt showed more interaction with its biological partner than the native Htt due to its expansion of interaction surface and flexible nature of binding residues. Our investigation of native and mutant Htt clearly shows that the structural and functional consequences of the polyQ elongation cause HD. Because of the central role of the Htt-PACSIN1 complex in maintaining connections between neurons, these differences likely contribute to the mechanism responsible for HD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. HDCTG. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72, 971–983.

    Article  Google Scholar 

  2. Trottier, Y., et al. (1995). Polyglutamine expansion as a pathological epitope in Huntington’s disease and four dominant cerebellar ataxias. Nature, 378, 403–406.

    Article  CAS  PubMed  Google Scholar 

  3. DiFiglia, M., et al. (1995). Huntington is a cytoplasmic protein associated with vesicles in human and rat brain neurons. Neuron, 14, 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  4. Chai, Y., et al. (2001). The role of protein composition in specifying nuclear inclusion formation in polyglutamine disease. Journal of Biological Chemistry, 276, 44889–44897.

    Article  CAS  PubMed  Google Scholar 

  5. Faber, P. W., et al. (1998). Huntington interacts with a family of WW domain proteins. Human Molecular Genetics, 7, 1463–1474.

    Article  CAS  PubMed  Google Scholar 

  6. Steffan, J. S., et al. (2000). The Huntington’s disease protein interactswith p53 and CREB-binding protein and represses transcription. Proceedings of the National Academy of Sciences USA, 97, 6763–6768.

    Article  CAS  Google Scholar 

  7. Zuccato, C., et al. (2001). Loss of Huntington-mediated BDNF gene transcription in Huntington’s disease. Science, 293, 493–498.

    Article  CAS  PubMed  Google Scholar 

  8. Cattaneo, E., et al. (2001). Loss of normal huntington function: New developments in Huntington’s disease research. Trends in Neurosciences, 24, 182–188.

    Article  CAS  PubMed  Google Scholar 

  9. Boutell, J. M., et al. (1999). Aberrant interactions of transcriptional repressor proteins with the Huntington’s disease gene product, Huntington. Human Molecular Genetics, 8, 1647–1655.

    Article  CAS  PubMed  Google Scholar 

  10. Dunah, A. W., et al. (2002). Sp1 and TAFII130 transcriptional activity disrupted in early Huntington’s disease. Science, 296, 2238–2243.

    Article  CAS  PubMed  Google Scholar 

  11. Slepnev, V. I., & De Camilli, P. (2000). Accessory factors in clathrin dependent synaptic vesicle endocytosis. Nature Reviews Neuroscience, 1, 161–172.

    Article  CAS  PubMed  Google Scholar 

  12. Sun, Y., et al. (2001). Polyglutamine-expanded Huntington promotes sensitization of N-methyl-D-aspartate receptors via post-synaptic density 95. Journal of Biological Chemistry, 276, 24713–24718.

    Article  CAS  PubMed  Google Scholar 

  13. Bates, G., et al. (2002). Huntington’s disease (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  14. Ontoya, A., Price, B. H., Menear, M., & Lepage, M. (2006). Brain imaging and cognitive dysfunctions in Huntington’s disease. The Journal of Psychiatry & Neuroscience, 31(1), 21–29.

    Google Scholar 

  15. Vonsattel, J. P., et al. (1985). Neuropathological classification of Huntington’s disease. Journal of Neuropathology and Experimental Neurology, 44, 559–577.

    Article  CAS  PubMed  Google Scholar 

  16. Gunawardena, S., et al. (2003). Disruption of axonal transport by loss of Huntington or expression of pathogenic polyQ proteins in Drosophila. Neuron, 40, 25–40.

    Article  CAS  PubMed  Google Scholar 

  17. Szebenyi, G., et al. (2003). Neuropathogenic forms of Huntington and androgen receptor inhibit fast axonal transport. Neuron, 40, 41–52.

    Article  CAS  PubMed  Google Scholar 

  18. Van der Burg, J. M., Björkqvist, M., & Brundin, P. (2009). Beyond the brain: Widespread pathology in Huntington’s disease. The Lancet Neurology, 8(8), 765–774. doi:10.1016/S1474-4422(09)70178-4.

    Article  PubMed  Google Scholar 

  19. Scherzinger, E., et al. (1997). Huntington-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell, 90, 549–558.

    Article  CAS  PubMed  Google Scholar 

  20. Wanker, E. E. (2000). Protein aggregation and pathogenesis of Huntington’s disease: mechanisms and correlations. The Journal of Biological Chemistry, 381, 937–942.

    CAS  Google Scholar 

  21. Poirier, M. A., Jiang, H., & Ross, C. A. (2005). A structure-based analysis of huntingtin mutant polyglutamine aggregation and toxicity: evidence for a compact beta-sheet structure. Human Molecular Genetics, 14, 765–774.

    Article  CAS  PubMed  Google Scholar 

  22. Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87, 493–506.

    Article  CAS  PubMed  Google Scholar 

  23. Nucifora, L. G., Burke, K. A., Feng, X., Arbez, N., Zhu, S., Miller, J., et al. (2012). Identification of novel potentially toxic oligomers formed in vitro from mammalian-derived expanded huntingtin exon-1 protein. Journal of Biological Chemistry, 287, 16017–16028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Q. C., Yeh, T.-L., Leyva, A., Frank, L. G., Miller, J., Kim, Y. E., et al. (2011). A compact beta model of huntingtin toxicity. Journal of Biological Chemistry, 286, 8188–8196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Z., Norris, J., Schwartz, C., & Alexov, E. (2011). In silico and in vitro investigations of the mutability of disease-causing missense mutation sites in spermine synthase. PLoS One, 6(5), e20373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. DiFiglia, M., et al. (1997). Aggregation of Huntington in neuronal intranuclear inclusions and dystrophic neurites in brain. Science, 277, 1990–1993.

    Article  CAS  PubMed  Google Scholar 

  27. Sharp, A. H., et al. (1995). Widespread expression of Huntington’s disease gene (IT15) protein product. Neuron, 14, 1065–1074.

    Article  CAS  PubMed  Google Scholar 

  28. Sittler, A., Wälter, S., Wedemeyer, N., Hasenbank, R., Scherzinger, E., Eickhoff, H., et al. (1998). SH3GL3 associates with the huntington exon 1 protein and promotes the formation of polygln-containing protein aggregates. Molecular Cell, 2, 427–436.

    Article  CAS  PubMed  Google Scholar 

  29. Sathasivam, et al. (1997). Aberrant processing of the Fugu HD (FrHD) mRNA in mouse cells and in transgenic mice. Human Molecular Genetics, 6(12), 2141–2149.

    Article  CAS  PubMed  Google Scholar 

  30. Modregger, J., et al. (2002). PACSIN 1 interacts with Huntington and is absent from synaptic varicosities in presymptomatic Huntington’s disease brains. Human Molecular Genetics, 11, 2547–2558.

    Article  CAS  PubMed  Google Scholar 

  31. Nicniocaill, B., Haraldsson, B., Hansson, O., O’Connor, W. T., & Brundin, P. (2001). Altered striatal amino acid neurotransmitter release monitored using microdialysis in R6/1 Huntington transgenic mice. European Journal of Neuroscience, 13, 206–210.

    Article  CAS  PubMed  Google Scholar 

  32. Purohit, R., Rajendran, V., & Sethumadhavan, R. (2011). Relationship between mutation of serine residue at 315th position in M. tuberculosis catalase-peroxidase enzyme and isoniazid susceptibility: An in silico analysis. Journal of Molecular Modeling, 17(4), 869–877.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, A., & Purohit, R. (2012). Computational investigation of pathogenic nsSNPs in CEP63 protein. Gene, 503(1), 75–82.

    Article  CAS  PubMed  Google Scholar 

  34. Rajendran, V., Purohit, R., & Sethumadhavan, R. (2012). In silico investigation of molecular mechanism of laminopathy caused by a point mutation (R482W) in lamin A/C protein. Amino Acids, 43(2), 603–615.

    Article  CAS  PubMed  Google Scholar 

  35. Rajendran, V., & Sethumadhavan, R. (2014). Drug resistance mechanism of PncA in Mycobacterium tuberculosis. Journal of Biomolecular Structure & Dynamics, 32(2), 209–221.

    Article  CAS  Google Scholar 

  36. Purohit, R. (2014). Role of ELA region in auto-activation of mutant KIT receptor: a molecular dynamics simulation insight. Journal of Biomolecular Structure & Dynamics, 32(7), 1033–1046.

    Article  CAS  Google Scholar 

  37. Gopalakrishnan, C., Kalsi, N., Jethi, S., & Purohit, R. (2015). Computational investigation of molecular mechanism and neuropathological implications in Huntington disease. Molecular and Cellular Biochemistry, 409(1–2), 1–11.

    Article  CAS  PubMed  Google Scholar 

  38. Kalsi, N., Gopalakrishnan, C., Rajendran, V., & Purohit, R. (2016). Biophysical aspect of phosphatidylinositol 3-kinase and role of oncogenic mutants (E542K & E545K). Journal of Biomolecular Structure & Dynamics,. doi:10.1080/07391102.2015.1127774.

    Google Scholar 

  39. Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). HADDOCK: A protein–protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125, 1731–1737.

    Article  CAS  PubMed  Google Scholar 

  41. Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5, 883–897.

    Google Scholar 

  42. Nilges, M. (1995). Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. Journal of Molecular Biology, 245, 645–660.

    Article  CAS  PubMed  Google Scholar 

  43. Nilges, M., Macias, M. J., O’Donoghue, S. I., & Oschkinat, H. (1997). Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. Journal of Molecular Biology, 269, 408–422.

    Article  CAS  PubMed  Google Scholar 

  44. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse- Kunstleve, R. W., et al. (1998). Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallographica. Section D, Biological Crystallography, 54, 905–921.

    Article  CAS  PubMed  Google Scholar 

  45. Porollo, A., & Meller, J. (2007). Prediction-based fingerprints of protein-protein interactions. Proteins: Structure, Function, and Bioinformatics, 66, 630–645.

    Article  CAS  Google Scholar 

  46. Porollo, A., & Meller, J. (2012). Computational methods for prediction of protein-protein interaction sites. In W. Cai & H. Hong (Eds.), Protein-protein interactionscomputational and experimental tools, InTech (Vol. 472, pp. 3–26).

  47. Hess, B., Kutzner, C., Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.

    Article  CAS  PubMed  Google Scholar 

  48. Spoel D., et al. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26, 1701–1718.

    Article  Google Scholar 

  49. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. V., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Ed.), Intermolecular forces (pp. 331–342). Dordrecht: D. Reidel Publishing Company.

    Chapter  Google Scholar 

  50. Berendsen, H. J. C., Postma, J. P. M., DiNola, A., & Hakk, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.

    Article  CAS  Google Scholar 

  51. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103, 8577–8593.

    Article  CAS  Google Scholar 

  52. Halperin, I., Ma, B., Wolfson, H., & Nussinov, R. (2002). Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins: Structure, Function, and Genetics, 47, 409–443.

    Article  CAS  Google Scholar 

  53. Janin, J., Henrick, K., Moult, J., Eyck, L. T., Sternberg, M. J., Vajda, S., et al. (2003). CAPRI: A critical assessment of predicted interactions. Proteins: Structure, Function, and Genetics, 52, 2–9.

    Article  CAS  Google Scholar 

  54. van Dijk, M., van Dijk, A. D. J., Hsu, V., Boelens, R., & Bonvin, A. M. J. J. (2006). Information-driven protein–DNA docking using HADDOCK: It is a matter of flexibility. Nucleic Acids Research., 34(11), 3317–3325. doi:10.1093/nar/gkl412.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kaltenbach, L. S., et al. (2007). Huntingtin interacting proteins are genetic modifiers of Neurodegeneration. PLoS Genetics, 3(5), e82.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the CSIR-Institute of Himalayan Bioresource Technology, Palampur, Vellore Institute of Technology University and Bioinformatics Resources and Applications Facility (BRAF), C-DAC, Pune for providing the facilities to carry out this work. This manuscript represents CSIR-IHBT communication number 4022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rituraj Purohit.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Chandrasekhar Gopalakrishnan and Shraddha Jethi have contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalakrishnan, C., Jethi, S., Kalsi, N. et al. Biophysical Aspect of Huntingtin Protein During polyQ: An In Silico Insight. Cell Biochem Biophys 74, 129–139 (2016). https://doi.org/10.1007/s12013-016-0728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-016-0728-7

Keywords

Navigation