Skip to main content
Log in

Biochemistry and evolutionary biology: Two disciplines that need each other

  • Commentary
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Biochemical information has been crucial for the development of evolutionary biology. On the one hand, the sequence information now appearing is producing a huge increase in the amount of data available for phylogenetic analysis; on the other hand, and perhaps more fundamentally, it allows understanding of the mechanisms that make evolution possible. Less well recognized, but just as important, understanding evolutionary biology is essential for understanding many details of biochemistry that would otherwise be mysterious, such as why the structures of NAD and other coenzymes are far more complicated than their functions would seem to require. Courses of biochemistry should thus pay attention to the essential role of evolution in selecting the molecules of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. It would be tempting to assume that by ‘animal’, Geoffroy meant ‘mammal’, but in fact he meant it much more generally, recognizing, for example, similarities in anatomy between mammals, fish, birds and even insects and spiders (Stott 2012).

  2. This does not mean that no other histone structures could function, only that there is no possible evolutionary route to them.

  3. As discussed by Friedmann (2004), this aphorism is better known in various versions attributed to Monod, such as ‘Anything that is true of Escherichia coli must be true of elephants, only more so’.

References

  • Anonymous 1754 Pensées sur l’interprétation de la Nature

  • Benner SA 2009 Life, the Universe and the scientific method (Gainesville, FL: The Ffame Press)

    Google Scholar 

  • Berg JM, Tymoczko JL and Stryer L 2012 Biochemistry (San Francisco: W. H. Freeman)

    Google Scholar 

  • Blackmond DG 2011 The origin of biological homochirality. Philos. Trans. R. Soc. Lond. B Biol. Sci. 36 2878–2884

    Article  Google Scholar 

  • Blount ZD, Barrick JE, Davidson CJ and Lenski RE 2012 Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489 513–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buckling A, Maclean RC, Brockhurst M A and Colegrave N 2009 The Beagle in a bottle. Nature 457 824–829

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas ML 2013 Michaelis and Menten and the long road to the discovery of cooperativity. FEBS Lett. 587 2767–2771

    Article  PubMed  Google Scholar 

  • Cárdenas ML, Cornish-Bowden A and Ureta T 1998 Evolution and regulatory role of the hexokinases. Biochim. Biophys. Acta 1401 242–264

    Article  PubMed  Google Scholar 

  • Cornish-Bowden A 1976 The effect of natural selection on enzymic catalysis. J. Mol. Biol. 101 1–9

    Article  CAS  PubMed  Google Scholar 

  • Cornish-Bowden A 1985 The amino-acid sequences of the copper-zinc superoxide dismutases from swordfish and Photobacter leiognathi confirm the predictions made from the compositions. Eur. J. Biochem. 151 333–335

    Article  CAS  PubMed  Google Scholar 

  • Cornish-Bowden A 2002 Enthalpy–entropy compensation: a phantom phenomenon. J. Biosci. 27 121–126

    Article  PubMed  Google Scholar 

  • Cornish-Bowden A 2012 Enthalpy–entropy compensation as deduced from measurements of temperature dependence; in Protein-ligand interactions (ed) H Gohlke (Weinheim: Wiley–Blackwell) pp 33–43

    Chapter  Google Scholar 

  • Cornish-Bowden A 2013 The origins of enzyme kinetics. FEBS Lett. 587 2725–2730

    Article  CAS  PubMed  Google Scholar 

  • Cornish-Bowden A and Cárdenas ML 2001 Information transfer in metabolic pathways: effects of irreversible steps in computer models. Eur. J. Biochem. 268 6616–6624

    Article  CAS  PubMed  Google Scholar 

  • Cornish-Bowden A and Nanjundiah V 2006 The basis of dominance; in The biology of genetic dominance (ed) RA Veitia (Georgetown, Texas: Landes Bioscience) pp 1–16

    Google Scholar 

  • Crick FHC 1958 On protein synthesis. Symp. Soc. Exp. Biol. 12 138–163

    CAS  PubMed  Google Scholar 

  • Daeschler EB, Shubin NH and Jenkins FA Jr 2006 Devonian tetrapod-like fish and the evolution of the tetrapod body plan. Nature 440 764–771

    Article  PubMed  Google Scholar 

  • Dallinger DH 1878 On the life-history of a minute septic organism: with an account of experiments made to determine its thermal death point. Proc. R. Soc. Lond. 27 332–350

    Article  Google Scholar 

  • Dean AM and Thornton JW 2007 Mechanistic approaches to the study of evolution: the functional synthesis. Nat. Rev. Genet. 8 675–688

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deichmann U, Schuster S, Mazat, J-P and Cornish-Bowden A 2014 Commemorating the 1913 Michaelis–Menten paper Die Kinetik der Invertinwirkung: three perspectives. FEBS J. 281 435–463

    Article  CAS  PubMed  Google Scholar 

  • Demeshkina N, Jenner L, Westhof E, Yusupov M and Yusupova G 2013 New structural insights into the decoding mechanism: translation infidelity via a G · U pair with Watson–Crick geometry. FEBS Lett. 587 1848–1857

    Article  CAS  PubMed  Google Scholar 

  • Dobzhansky T 1973 Nothing in biology makes sense except in the light of evolution. Am. Biol. Teach. 35 125–129

    Article  Google Scholar 

  • Doolittle RF and Blombäck B 1964 Amino-acid sequence investigations of fibrinopeptides from various mammals: evolutionary implications. Nature 202 147–152

    Article  CAS  PubMed  Google Scholar 

  • Ducluzeau AL, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ and Nitschke W 2009 Was nitric oxide the first deep electron sink? Trends Biochem. Sci. 34 9–15

    CAS  Google Scholar 

  • Fell D 1997 Understanding the control of metabolism (London: Portland Press)

    Google Scholar 

  • Fersht AR and Kaethner MM 1976 Enzyme hyper-specificity – rejection of threonine by valyl-transfer-RNA synthetase by mis-acylation and hydrolytic editing. Biochemistry 15 3342–3346

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA 1934 The possible modification of the response of the wild type to recurrent mutations. Am. Nat. 62 115–126

    Article  Google Scholar 

  • Fitch WM and Margoliash E 1967 Construction of phylogenetic trees. Science 155 279–284

    Article  CAS  PubMed  Google Scholar 

  • Friedmann HC 2004 From ‘butyribacterium’ to ‘E. coli’ – An essay on unity in biochemistry. Perspect. Biol. Med. 47 47–66

    Article  PubMed  Google Scholar 

  • Galilei G 1638 Discorsi e dimostrazioni matematiche intorno a due nuove scienze attenenti alla mecanica e i movimenti locali (Leyden: Elzevir)

    Google Scholar 

  • Geoffroy St Hilaire É 1830 Principes de philosophie zoologique: discutés en mars 1830 au sein de l’Académie royale des sciences (Paris: Pichon et Didier)

    Book  Google Scholar 

  • Guijarro A and Yus M 2009 The origin of chirality in the molecules of life (Cambridge: RSC Publishing)

    Google Scholar 

  • Gunja-Smith Z, Marshall JJ, Mercier C, Smith EE and Whelan WJ 1970 Revision of the Meyer–Bernfeld model of glycogen and amylopectin. FEBS Lett. 12 101–104

    Article  PubMed  Google Scholar 

  • Gutfreund H 1995 Kinetics for the Life Sciences (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  • Hochachka PW and Somero GN 1984 Biochemical adaptation (Princeton, NJ: Princeton University Press)

  • Hofmeyr JHS and Cornish-Bowden A 2000 Regulating the cellular economy of supply and demand. FEBS Lett. 476 47–51

    Article  CAS  PubMed  Google Scholar 

  • Jacob F 1977 Evolution and tinkering. Science 196 1161–1166

    Article  CAS  PubMed  Google Scholar 

  • Kacser H and Burns JA 1981 The molecular basis of dominance. Genetics 97 639–666

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kacser H, Burns JA and Fell DA 1995 The control of flux. Biochem. Soc. Trans. 23 341–366

    CAS  PubMed  Google Scholar 

  • Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I and Whitlock MC 2012 Experimental evolution. Trends Ecol. Evol. 27 547–560

    Article  PubMed  Google Scholar 

  • Kimura M 1983 The neutral theory of molecular evolution (Cambridge: Cambridge University Press)

    Book  Google Scholar 

  • Kluyver AJ and Donker HJL 1925 The unity in the chemistry of the fermentative sugar dissimilation processes of microbes. Proc. K. Ned. Akad. Wet. 28 297–313

    CAS  Google Scholar 

  • Knowles JR 1991 Enzyme catalysis – not different, just better. Nature 350 121–124

    Article  CAS  PubMed  Google Scholar 

  • Kohn JA, Deshpande K and Ortlund EA 2012 Deciphering modern glucocorticoid cross-pharmacology using ancestral corticosteroid receptors. J. Biol. Chem. 287 16267–16275

    Google Scholar 

  • Kolkman JA and Stemmer WPC 2001 Directed evolution of proteins by exon shuffling. Nat. Biotechnol. 19 423–428

    Article  CAS  PubMed  Google Scholar 

  • Lawen A and Zocher R 1990 Cyclosporin synthetase: the most complex peptide synthesizing multienzyme polypeptide so far described. J. Biol. Chem. 265 11355–11360

    CAS  PubMed  Google Scholar 

  • Lewin R 1987 Bones of contention: Controversies in the search for human origins (New York: Simon and Schuster)

  • Lomako J, Lomako WM and Whelan WJ 1988 A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB J. 2 3097–3103

    CAS  PubMed  Google Scholar 

  • McBrearty S and Jablonski NG 2005 First fossil chimpanzee. Nature 437 105–108

    Article  CAS  PubMed  Google Scholar 

  • Mayr E 1961 Cause and effect in biology. Science 134 1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Mays PK, McAnulty RJ, Campa JS and Laurent GJ 1991 Age-related changes in collagen synthesis and degradation in rat tissues. Importance of degradation of newly synthesized collagen in regulating collagen production. Biochem. J. 276 307–313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meléndez R, Meléndez-Hevia E and Cascante M 1997 How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building J. Mol. Evol. 45 446–455

    Article  PubMed  Google Scholar 

  • Meléndez-Hevia E and de Paz-Lugo P 2008 Branch-point stoichiometry can generate weak links in metabolism: the case of glycine biosynthesis. J. Biosci. 33 771–780

    Article  PubMed  Google Scholar 

  • Meléndez-Hevia E, de Paz-Lugo P, Cornish-Bowden A and Cárdenas ML 2009 A weak link in metabolism: the metabolic capacity for glycine biosynthesis does not satisfy the need for collagen synthesis. J. Biosci. 34 853–872

    Article  PubMed  Google Scholar 

  • Meyer KH and Bernfeld P 1940 Research on starch. V Amylopectin Helv. Chim. Acta 23 875–885

    Article  CAS  Google Scholar 

  • Michaelis L and Menten ML 1913 Kinetik der Invertinwirkung. Biochem. Z. 49 333–369

    CAS  Google Scholar 

  • Monod J, Changeux JP and Jacob F 1963 Allosteric proteins and cellular control systems. J. Mol. Biol. 6 306–329

    Article  CAS  PubMed  Google Scholar 

  • Oba T, Andachi Y, Muto A and Osawa S 1991 CGG – an unassigned or nonsense codon in Mycoplasma capricolum. Proc. Natl. Acad. Sci. USA 88 921–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta T 1973 Slightly deleterious mutant substitutions in evolution. Nature 246 96–98

    Article  CAS  PubMed  Google Scholar 

  • Ohta T and Gillespie JH 1996 Development of neutral and nearly neutral theories. Theor. Popul. Biol. 49 128–142

    Article  PubMed  Google Scholar 

  • Penny D, Foulds LR and Hendy MD 1982 Testing the theory of evolution by comparing phylogenetic trees constructed from five different protein sequences. Nature 297 197–200

    Article  CAS  PubMed  Google Scholar 

  • Peretó J 2011 The origin and evolution of metabolisms; in Origins and evolution of life: an astrobiological perspective (ed.) M Gargaud, P López-García and H Martin (Cambridge: Cambridge University Press) pp 270–287

    Chapter  Google Scholar 

  • Pizzarello S and Lahav M 2010 On the emergence of biochemical homochirality: an elusive beginning. Orig. Life Evol. Biosph. 40 1–2

    Article  PubMed  Google Scholar 

  • Pizzarello S and Shock E 2010 The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb. Perspect. Biol. 2 a002105

    Article  PubMed Central  PubMed  Google Scholar 

  • Raymond J and Blankenship RE 2004 Biosynthetic pathways, gene replacement and the antiquity of life Geobiology 2 199–203

    Article  CAS  Google Scholar 

  • Raymond J and Segrè D 2006 The effect of oxygen on biochemical networks and the evolution of complex life. Science 311 1764–1767

    Article  CAS  PubMed  Google Scholar 

  • Sarich VM and Wilson AC 1967 Rates of albumin evolution in primates. Proc. Natl. Acad. Sci. USA 58 142–148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stott R 2012 Darwin’s ghosts: In search of the first evolutionists (London: Bloomsbury)

  • Szathmáry E 2003 Why are there four letters in the genetic alphabet? Nat. Rev. Genet. 4 995–1001

    Article  PubMed  Google Scholar 

  • Tawfik DS 2010 Messy biology and the origins of evolutionary innovations. Nat. Chem. Biol. 6 692–696

    PubMed  Google Scholar 

  • Thompson DW 1945 On growth and form (Cambridge: Cambridge University Press)

    Google Scholar 

  • Ureta T 2011 Origen y Evolución de Proteinas y Enzimas (Santiago, Chile: Editorial Universitaria)

    Google Scholar 

  • Valdecasas AG, Boto L and Correas AM 2013 There is no common ground between science and religion. J. Biosci. 38 181–187

    Article  PubMed  Google Scholar 

  • Woese CR and Fox GE 1977 Phylogenetic structure of the prokaryote domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA 74 5088–5090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woese CR and Goldenfeld N 2009 How the microbial world saved evolution from the Scylla of molecular biology and the Charybdis of the modern synthesis. Microb. Mol. Biol. Revs. 73 14–21

    Article  Google Scholar 

  • Wright S 1934 Fisher’s theory of dominance. Am. Nat. 63 274–279

    Article  Google Scholar 

  • Yang Z, Chen F, Alvarado JB and Benner SA 2011 Amplification, mutation, and sequencing of a six-letter synthetic genetic system. J. Am. Chem. Soc. 133 15105–15112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuckerkandl E and Pauling L 1962 Molecular disease, evolution, and genetic heterogeneity; in Horizons in biochemistry (ed) M Kasha and Pullman B (New York: Academic Press) pp 189–225

    Google Scholar 

  • Zuckerkandl E and Pauling L 1965 Evolutionary divergence and convergence of proteins; in Evolving genes and proteins (ed) V Bryson and HJ Vogel (New York: Academic Press) pp 97–166

    Google Scholar 

Download references

Acknowledgements

ACB and MLC acknowledge the support of the Centre National de la Recherche Scientifique. JP acknowledges the intellectual motivation of many students during more than 20 years of teaching evolutionary biochemistry and origins of life at the University of Valencia, as well as the financial support for his research on symbiosis to the Spanish Mineco (grant BFU2012-39816-C02-01). The impetus for writing this article came from three sessions at the IUBMB-FEBS-SEBBM Congress in Seville in 2012, and we thank the organizers for facilitating our participation in these.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athel Cornish-Bowden.

Additional information

[Cornish-Bowden A, Peretó J and Cárdenas ML 2014 Biochemistry and evolutionary biology: Two disciplines that need each other. J. Biosci. 39 1–15] DOI 10.1007/s12038-014-9414-3

This paper is dedicated to the memory of Professor Tito Ureta (1935–2012), in recognition of his great contributions to evolutionary biochemistry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornish-Bowden, A., Peretó, J. & Cárdenas, M.L. Biochemistry and evolutionary biology: Two disciplines that need each other. J Biosci 39, 13–27 (2014). https://doi.org/10.1007/s12038-014-9414-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-014-9414-3

Keywords

Navigation