Skip to main content
Log in

How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Optimization of molecular design in cellular metabolism is a necessary condition for guaranteeing a good structure-function relationship. We have studied this feature in the design of glycogen by means of the mathematical model previously presented that describes glycogen structure and its optimization function [Meléndez-Hevia et al. (1993), Biochem J 295: 477–483]. Our results demonstrate that the structure of cellular glycogen is in good agreement with these principles. Because the stored glucose in glycogen must be ready to be used at any phase of its synthesis or degradation, the full optimization of glycogen structure must also imply the optimization of every intermediate stage in its formation. This case can be viewed as a molecular instance of the eye problem, a classical paradigm of natural selection which states that every step in the evolutionary formation of a functional structure must be functional. The glycogen molecule has a highly optimized structure for its metabolic function, but the optimization of the full molecule has meaning and can be understood only by taking into account the optimization of each intermediate stage in its formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Akher M, Smith F (1951) The repeating unit of glycogen. J Am Chem Soc 73: 994–996

    Article  CAS  Google Scholar 

  • Alonso MD, Lomako J, Lomako WM, Whelan WJ (1995) A new look at the biogenesis of glycogen. FASEB J 9: 1126–1137

    PubMed  CAS  Google Scholar 

  • Baldwin E, Bell DJ (1940) The glycogen of Helix pomatia. Biochem J 34: 139–143

    PubMed  CAS  Google Scholar 

  • Barry C, Gavard R, Milhaud G, Aubert JP (1953) Etude du glycogène extrait de Bacillus megatherium. Ann Inst Pasteur 84: 605–613

    CAS  Google Scholar 

  • Bathgate GN, Manners DJ (1966) Multiple branching in glycogens. Biochem J 101: 3c-5c

    PubMed  CAS  Google Scholar 

  • Bell DJ (1944) Analysis of mixtures of 2:3:4:6-Tetramethyl glucose with 2:3:6-trimethyl and dimethyl glucoses by partition on a silica-water column: a small-scale method for investigating the structures of glucopolysaccharides. J Chem Soc 473–476

  • Bell DJ, Manners DJ (1952) Action of crystalline β-amylase on some glycogens. J Chem Soc 3641–3645

  • Blows JMH, Calder PC, Geddes R, Willis PR (1988) The structure of placental glycogen. Placenta 9: 493–500

    Article  PubMed  CAS  Google Scholar 

  • Boyer C, Preiss J (1977) Biosynthesis of bacterial glycogen. Purification and properties of the Escherichia coli B α-1,4-glucan:α-1,4-glucan 6-glycosyl transferase. Biochemistry 16: 3693–3699

    Article  PubMed  CAS  Google Scholar 

  • Brown BI, Brown DH (1966) α-1,4-Glucan 6-glycosyltransferase from mammalian muscle. Methods Enzymol 8: 395–403

    Article  CAS  Google Scholar 

  • Bullivant HM, Geddes R, Willis PR (1983) The fine structure of glycogen. Biochem Int 6: 497–506

    CAS  Google Scholar 

  • Calder PC (1987) The structure and metabolism of mammalian glycogens. Ph.D. Thesis, University of Auckland, New Zealand

    Google Scholar 

  • Calder PC (1991) Glycogen structure and biogenesis. Int J Biochem 23: 1335–1352

    Article  PubMed  CAS  Google Scholar 

  • Calder PC, Geddes R (1985) The proteoglycan nature of mammalian muscle glycogen. Glycoconjugate J 2: 365–373

    CAS  Google Scholar 

  • Calder PC, Geddes R (1986) Digestion of the protein associated with muscle and liver glycogens. Carbohydr Res 148: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Camici M, DePaoli-Roach AA, Roach PJ (1984) Rabbit liver glycogen synthase. Purification and comparison of the properties of glucose 6-P dependent and glucose 6-P independent forms of the enzyme. J Biol Chem 259: 3429–3434

    PubMed  CAS  Google Scholar 

  • Caudwell FB, Cohen P (1980) Purification and subunit structure of glycogen-branching enzyme from rabbit muscle. Eur J Biochem 109: 391–394

    Article  PubMed  CAS  Google Scholar 

  • Darwin CR (1859) On the origin of the species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, London. Facsimile reprint of the first edition. Harvard University Press, Boston, Mass

    Google Scholar 

  • Dawkins R (1986) The blind watchmaker. Penguin, London

    Google Scholar 

  • Dawkins R (1994) The eye in a twinkling. Nature 368: 690–691

    Article  PubMed  CAS  Google Scholar 

  • Dobzhansky Th (1973) Nothing in Biology makes sense except in the light of evolution. Amer Biol Teacher 35: 125–129

    Google Scholar 

  • Farkas I, Hardy TA, Goeb MG, Roach PJ (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem 266: 15602–15607

    PubMed  CAS  Google Scholar 

  • Gilman A, Ross J (1995) Genetic-algorythm selection of a regulatory structure that directs flux in a simple metabolic model. Biophys J 69: 1321–1333

    Article  PubMed  CAS  Google Scholar 

  • Golden S, Wals PA, Katz J (1977) An improved procedure for the assay of glycogen synthase and phosphorylase in rat liver homogenates. Anal Biochem 77: 436–445

    Article  PubMed  CAS  Google Scholar 

  • Goldsmith E, Sprang S, Fletterick R (1982) Structure of maltoheptaose by difference fourier methods and a model for glycogen. J Mol Biol 156: 411–427

    Article  PubMed  CAS  Google Scholar 

  • Greenwood CT, Manners DJ (1957) The alkali-stability and molecular size of glycogens. Proc Chem Soc 26–27

  • Gunja-Smith Z, Marshall JJ, Mercier C, Smith EE, Whelan WJ (1970) A revision of the Meyer-Bernfeld model of glycogen and amylopectin. FEBS Lett 12: 101–104

    Article  PubMed  Google Scholar 

  • Gunja-Smith Z, Marshall JJ, Smith EE (1971) Enzymatic determination of the unit chain length of glycogen and related polysaccharides. FEBS Lett 13: 309–311

    Article  CAS  Google Scholar 

  • Harrap BS, Manners DJ (1952) Molecular weight of glycogens determined by light-scattering methods. Nature 170: 419–420

    Article  PubMed  CAS  Google Scholar 

  • Hassid WZ, Chaikoff IL (1938) The molecular structure of liver glycogen of the dog. J Biol Chem 123: 755–759

    CAS  Google Scholar 

  • Haworth WN, Hirst EL, Smith F (1939) Polysaccharides. Part XXXVIII. The constitution of glycogen from fish liver and fish mussel. J Chem Soc 1914–1922

  • Heinrich R, Holzhütter HG, Schuster S (1987) A theoretical approach to the evolution and structural design of enzymatic networks: linear enzymatic chains, branched pathways and glycolysis of erythrocytes. Bull Math Biol 49: 539–595

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Hoffmann E (1991) Kinetic parameters of enzymatic reactions in states of maximal activity: an evolutionary approach. J Theor Biol 151: 249–283

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Schuster S, Holzhütter HG (1991) Mathematical analysis of enzyme reaction systems using optimization principles. Eur J Biochem 201: 1–21

    Article  PubMed  CAS  Google Scholar 

  • Heinrich R, Montera F, Klipp E, Waddell TG, Meléndez-Hevia E (1997) Theoretical approaches to the evolutionary optimization of glycolysis. Kinetic and thermodynamic constraints. Eur J Biochem 243: 191–201

    Article  PubMed  CAS  Google Scholar 

  • Hue L, Bontemps F, Hers HG (1975) The effect of glucose and of potassium ions on the interconversion of the two forms of glycogen phosphorylase and of glycogen synthetase in isolated rat liver preparations. Biochem J 152: 105–114

    PubMed  CAS  Google Scholar 

  • Illingworth B, Larner J, Cori GT (1952) Structure of glycogens and amylopectins. I, Enzymatic determination of chain length. J Biol Chem 199: 631–640

    PubMed  CAS  Google Scholar 

  • Kjolberg O, Manners DJ, Wright A (1963) α-1,4-Glucosans. XVII, The molecular structure of some glycogens. Comp Biochem Physiol 8: 353–365

    Article  Google Scholar 

  • Krisman CR (1962) α-1,4-Glucan: α-1,4-glucan 6-glycosyltransferase from liver. Biochim Biophys Acta 65: 307–315

    Article  PubMed  CAS  Google Scholar 

  • Larner J (1955) Branching enzyme from liver. Methods Enzymol1: 222–225

    Article  CAS  Google Scholar 

  • Liddle AM, Manners DJ (1957) α-1,4-Glucosans. VIII Multiplebranching in glycogen and amylopectin. J Chem Soc 4708–4711

  • Lomako J, Lomako WM, Whelan WJ (1991) Proglycogen: a lowmolecular-weight form of muscle glycogen. FEBS Lett 279: 223–228

    Article  PubMed  CAS  Google Scholar 

  • Lomako J, Lomako WM, Whelan WJ, Dombro RS, Neary JT, Norenberg MD (1993) Glycogen synthesis in the astrocyte: from glycogenin to proglycogen to glycogen. FASEB J 7: 1386–1393

    PubMed  CAS  Google Scholar 

  • Lupiáñez JA, García-Salgero L, Torres NV, Peragón J, Meléndez-Hevia E (1996) Metabolic support of the flight promptness of birds. Comp Biochem Physiol 113B: 439–443

    Google Scholar 

  • Madsen NB, Cori CF (1958) The binding of glycogen and phosphorylase. J Biol Chem 233: 1251–1254

    PubMed  CAS  Google Scholar 

  • Manners DJ (1957) The molecular structure of glycogens. Adv Carbohydrate Chem 12: 261–298

    CAS  Google Scholar 

  • Manners DJ, Maung K (1955)α-1,4-Glucosans. III, Molecular structure of brewer’s yeast glycogens. J Chem Soc 867–870

  • Manners DJ, Ryley JF (1952) Metabolism of the protozoa. II, Glycogen of the ciliate, Tetrahymena pyriformis (Glaucoma piriformis). Biochem J 52: 480–482

    PubMed  CAS  Google Scholar 

  • Manners DJ, Ryley JF (1955) Metabolism of the protozoa. VI The glycogen of the parasitic flagellates Trichomonas foetus and Trichomonas gallinae. Biochem J 59: 369–372

    PubMed  CAS  Google Scholar 

  • Manners DJ, Wright A (1962) α-1,4-Glucosans. XIII, Determination of the average chain length of glycogens by α-amylolysis. J Chem Soc 1597–1602

  • Meléndez-Hevia E (1990) The game of the pentose phosphate cycle: a mathematical approach to study the optimization in design of metabolic pathways during evolution. Biomed Biochim Acta 49: 903–916

    PubMed  Google Scholar 

  • Meléndez-Hevia E, Isidoro A (1985) The game of the pentose phosphate cycle. J Theor Biol 117: 251–263

    Article  PubMed  Google Scholar 

  • Meléndez-Hevia E, Torres NV (1988) Economy of design in metabolic pathways: further remarks on the game of the pentose phosphate cycle. J Theor Biol 132: 97–111

    Article  PubMed  Google Scholar 

  • Meléndez-Hevia E, Waddell TG, Shelton DE (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J 295: 477–483

    PubMed  Google Scholar 

  • Meléndez-Hevia E, Waddell TG, Montero F (1994) Optimization of metabolism: the evolution of metabolic pathways toward simplicity through the game of the pentose phosphate cycle. J Theor Biol 166: 201–220

    Article  Google Scholar 

  • Meléndez-Hevia E, Waddell TG, Raposo RR, Lupiáñez JA (1995) Evolution of metabolism: optimization of glycogen structure. J Biol Syst 3: 177–186

    Article  Google Scholar 

  • Meléndez-Hevia E, Waddell TG, Cascante M (1996) The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in design of metabolic pathways during evolution. J Mol Evol 43: 293–303

    Article  PubMed  Google Scholar 

  • Meléndez-Hevia E, Waddell TG, Heinrich R, Montero F (1997a) Theoretical approaches to the evolutionary optimization of glycolysis. Chemical analysis. Eur J Biochem 244: 527–543

    Article  PubMed  Google Scholar 

  • Meléndez-Hevia E, Guinovart JJ, Cascante M (1997b) The role of channelling in glycogen metabolism. In: Agius L, Sherratt HSA (eds) Channelling in intermediary metabolism. Portland Press, London

    Google Scholar 

  • Mercier C, Whelan W (1970) The fine structure of glycogen from type IV glycogen-storage disease. Eur J Biochem 16: 579–583

    Article  PubMed  CAS  Google Scholar 

  • Montero F, Nuño JC, Andrade MA, Pérez-Iratxeta C, Morán F, Meléndez-Hevia E (1996) The role of natural selection and evolution in the game of the pentose phosphate cycle. In: Ghista DN (ed) Biomedical and life physics. Vieweg, Munich, pp 158–168

    Google Scholar 

  • Newsholme EA, Leech AR (1983) Biochemistry for the medical sciences. Wiley, Chichester

    Google Scholar 

  • Northcote DH (1953) Molecular structure and shape of yeast glycogen. Biochem J 53: 348–352

    PubMed  CAS  Google Scholar 

  • Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE (1972) Metabolic profiles of the three fibre types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11: 2627–2633

    Article  PubMed  CAS  Google Scholar 

  • Ridley M (1993) Evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Ryman BE, Whelan WJ (1971) New aspects of glycogen metabolism. Adv Enzymol Relat Areas Mol Biol 34: 285–443

    Article  PubMed  CAS  Google Scholar 

  • Skurat AV, Peng HL, Chang HY, Cannon JF, Roach PJ (1996) Ratedetermining steps in the biosynthesis of glycogen in COS cells. Arch Biochem Biophys 328: 283–288

    Article  PubMed  CAS  Google Scholar 

  • Smith EE (1968) Enzymic control of glycogen structure. In: Whelan WJ (ed) Control of glycogen metabolism. Universitetsforlaget, Oslo. Academic Press, New York, pp 203–213

    Google Scholar 

  • Stalmans W, De Wulf H, Hue L, Hers H-G (1974) Sequential inactivation of glycogen phosphorylase and activation of glycogen synthase in liver after administration of glucose to mice and rats. Mechanism of the hepatic threshold to glucose. Eur J Biochem 41: 127–134

    Article  CAS  Google Scholar 

  • Stryer L (1995) Biochemistry. W.H. Freeman and Co, New York

    Google Scholar 

  • Thayer RE, Rice CL, Pettigrew FP, Noble EG, Taylor AW (1993) The fibre composition of skeletal muscle. In: Poortmans JR (ed) Principles of exercise biochemistry, 2nd ed. Karger, Basel, pp 25–50

    Google Scholar 

  • Walker GJ, Whelan WJ (1960) The mechanism of carbohydrase action. 8. Structures of the muscle-phosphorylase limit dextrins of glycogen and amylopectin. Biochem J 76: 264–268

    PubMed  CAS  Google Scholar 

  • Westphal SA, Nuttal FQ (1992) Comparative characterization of human and rat liver glycogen synthase. Arch Biochem Biophys 292: 479–486

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meléndez, R., Meléndez-Hevia, E. & Cascante, M. How did glycogen structure evolve to satisfy the requirement for rapid mobilization of glucose? A problem of physical constraints in structure building. J Mol Evol 45, 446–455 (1997). https://doi.org/10.1007/PL00006249

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/PL00006249

Key words

Navigation