Skip to main content
Log in

Screening of cellular proteins that interact with the classical swine fever virus non-structural protein 5A by yeast two-hybrid analysis

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Classical swine fever virus (CSFV), the pathogen of classical swine fever (CSF), causes severe hemorrhagic fever and vascular necrosis in domestic pigs and wild boar. A large number of evidence has proven that non-structural 5A (NS5A) is not only a very important part of viral replication complex, but also can regulate host cell’s function; however, the underlying mechanisms remain poorly understood. In the current study, aiming to find more clues in understanding the molecular mechanisms of CSFV NS5A’s function, the yeast two-hybrid (Y2H) system was adopted to screen for CSFV NS5A interactive proteins in the cDNA library of the swine umbilical vein endothelial cell (SUVEC). Alignment with the NCBI database revealed 16 interactive proteins: DDX5, PSMC3, NAV1, PHF5A, GNB2L1, CSDE1, HSPA8, BRMS1, PPP2R3C, AIP, TMED10, POLR1C, TMEM70, METAP2, CHORDC1 and COPS6. These proteins are mostly related to gene transcription, protein folding, protein degradation and metabolism. The interactions detected by the Y2H system should be considered as preliminary results. Since identifying novel pathways and host targets, which play essential roles during infection, may provide potential targets for therapeutic development. The finding of proteins obtained from the SUVEC cDNA library that interact with the CSFV NS5A protein provide valuable information for better understanding the interactions between this viral protein and the host target proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Becher P and Thiel H 2002 Genus Pestivirus (Flaviviridae); in The Springer index of viruses (Heidelberg, Germany: Springer-Verlag) pp 327–331

  • Bironaite D, Brunk U and Venalis A 2013 Protective induction of Hsp70 in heat‐stressed primary myoblasts. Involvement of MAPKs. J. Cell. Biochem. 114 2024–2031

    Article  CAS  PubMed  Google Scholar 

  • Brass V, Pal Z, Sapay N, Deleage G, Blum HE, Penin F and Moradpour D 2007 Conserved determinants for membrane association of nonstructural protein 5A from hepatitis C virus and related viruses. J. Virol. 81 2745–2757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang HY, Chi JT, Dudoit S, Bondre C, Van De Rijn M, Botstein D and Brown PO 2002 Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl. Acad. Sci. USA 99 12877–12882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Xiao J, Sheng C, Wang J, Jia L, Zhi Y, Li G, Chen J and Xiao M 2012 Classical swine fever virus NS5A regulates viral RNA replication through binding to NS5B and 3′UTR. Virology 432 376–388

    Article  CAS  PubMed  Google Scholar 

  • Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, Van De Rijn M and Botstein D 2003 Endothelial cell diversity revealed by global expression profiling. Proc. Natl. Acad. Sci. USA 100 10623–10628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuthbert JA 1994 Hepatitis C: progress and problems. Clin. Microbiol. Rev. 7 505–532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedlander R, Jarosch E, Urban J, Volkwein C and Sommer T 2000 A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat. Cell Biol. 2 379–384

    Article  CAS  PubMed  Google Scholar 

  • Gallastegui N and Groll M 2010 The 26S proteasome: assembly and function of a destructive machine. Trends Biochem. Sci. 35 634–642

    Article  CAS  PubMed  Google Scholar 

  • Griffith EC, Su Z, Niwayama S, Ramsay CA, Chang YH and Liu JO 1998 Molecular recognition of angiogenesis inhibitors fumagillin and ovalicin by methionine aminopeptidase 2. Proc. Natl. Acad. Sci. USA 95 15183–15188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu X, Hao Y and Wang X 2012 Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poultry Sci. 91 790–799

    Article  CAS  Google Scholar 

  • He L, Zhang Y, Lin Z, Li W, Wang J and Li HL 2012 Classical swine fever virus NS5A protein localizes to endoplasmic reticulum and induces oxidative stress in vascular endothelial cells. Virus Genes 1–9

  • He Y, Tan SL, Tareen SU, Vijaysri S, Langland JO, Jacobs BL and Katze MG 2001 Regulation of mRNA translation and cellular signaling by hepatitis C virus nonstructural protein NS5A. J. Virol. 75 5090–5098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He Y, Yan W, Coito C, Li Y, Gale M and Katze MG 2003 The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J. Gen. Virol. 84 535–543

    Article  CAS  PubMed  Google Scholar 

  • Hong HX, Zhang YM, Xu H, Su ZY and Sun P 2007 Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Molecules Cells 24 358

    CAS  PubMed  Google Scholar 

  • Huang L, Feng L, Yang L, Zhou W, Zhao S and Li C 2002 Screen and identification of proteins interacting with ADAM19 cytoplasmic tail. Mol. Biol. Rep. 29 317–323

    Article  CAS  PubMed  Google Scholar 

  • Johns HL, Doceul V, Everett H, Crooke H, Charleston B and Seago J 2010 The classical swine fever virus N-terminal protease N(pro) binds to cellular HAX-1. J. Gen. Virol. 91 2677–2686

    Article  CAS  PubMed  Google Scholar 

  • Kalliampakou KI, Kalamvoki M and Mavromara P 2005 Hepatitis C virus (HCV) NS5A protein downregulates HCV IRES-dependent translation. J. Gen. Virol. 86 1015–1025

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S and Nakaya A 2002 The KEGG databases at GenomeNet. Nucleic Acids Res. 30 42–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang K, Guo K, Tang Q, Zhang Y, Wu J, Li W and Lin Z 2012 Interactive cellular proteins related to classical swine fever virus non-structure protein 2 by yeast two-hybrid analysis. Mol. Biol. Rep. 39 10515–10524

    Article  CAS  PubMed  Google Scholar 

  • Karagöz GE, Duarte AMS, Ippel H, Uetrecht C, Sinnige T, van Rosmalen M, Hausmann J, Heck AJR, Boelens R and Rüdiger SGD 2011 N-terminal domain of human Hsp90 triggers binding to the cochaperone p23. Proc. Natl. Acad. Sci. USA 108 580–585

    Article  PubMed Central  PubMed  Google Scholar 

  • Mamiya N and Worman HJ 1999 Hepatitis C virus core protein binds to a DEAD box RNA helicase. J. Biol. Chem. 274 15751–15756

    Article  CAS  PubMed  Google Scholar 

  • Mukouyama Y, Shin D, Britsch S, Taniguchi M and Anderson DJ 2002 Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109 693–705

    Article  CAS  PubMed  Google Scholar 

  • Nezames CD and Deng XW 2012 The COP9 Signalosome: Its regulation of cullin-based E3 ubiquitin ligases and role in photomorphogenesis. Plant Physiol. 160 38–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nickell S, Beck F, Scheres SHW, Korinek A, Förster F, Lasker K, Mihalache O, Sun N, Nagy I and Sali A 2009 Insights into the molecular architecture of the 26S proteasome. Proc. Natl. Acad. Sci. USA 106 11943–11947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owsianka AM and Patel AH 1999 Hepatitis C virus core protein interacts with a human DEAD box protein DDX3. Virology 257 330–340

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB and Toft DO 2003 Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp. Biol. Med. 228 111–133

    CAS  Google Scholar 

  • Rao RV and Bredesen DE 2004 Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr. Opin. Cell Biol. 16 653–662

    Article  CAS  PubMed  Google Scholar 

  • Schüller M, Jenne D and Voltz R 2005 The human PNMA family: novel neuronal proteins implicated in paraneoplastic neurological disease. J. Neuroimmunol. 169 172–176

    Article  PubMed  Google Scholar 

  • Serva S and Nagy PD 2006 Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J. Virol. 80 2162–2169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng C, Zhu Z, Yu J, Wan L, Wang Y, Chen J, Gu F and Xiao M 2010 Characterization of NS3, NS5A and NS5B of classical swine fever virus through mutation and complementation analysis. Vet. Microbiol. 140 72–80

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Hu Y, Gong J, Zhu C and Zhu B 2005 Identification of β-lactamase inhibitory peptide using yeast two-hybrid system. Biochemistry 70 753–760

    CAS  PubMed  Google Scholar 

  • Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J and Bork P 2011 The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39: D561–D568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tai AW, Benita Y, Peng LF, Kim SS, Sakamoto N, Xavier RJ and Chung RT 2009 A functional genomic screen identifies cellular cofactors of hepatitis C virus replication. Cell Host Microbe 5 298–307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang Q, Guo K, Kang K, Zhang Y, He L and Wang J 2011 Classical swine fever virus NS2 protein promotes interleukin-8 expression and inhibits MG132-induced apoptosis. Virus Genes 42 355–362

    Article  CAS  PubMed  Google Scholar 

  • Tang QH, Zhang YM, Fan L, Tong G, He L and Dai C 2010 Classic swine fever virus NS2 protein leads to the induction of cell cycle arrest at S-phase and endoplasmic reticulum stress. Virol. J. 7 4

    Article  PubMed Central  PubMed  Google Scholar 

  • Tellinghuisen TL, Marcotrigiano J, Gorbalenya AE and Rice CM 2004 The NS5A protein of hepatitis C virus is a zinc metalloprotein. J. Biol. Chem. 279 48576–48587

    Article  CAS  PubMed  Google Scholar 

  • Wu SC, Chang SC, Wu HY, Liao PJ and Chang MF 2008 Hepatitis C virus NS5A protein down-regulates the expression of spindle gene Aspm through PKR-p38 signaling pathway. J. Biol. Chem. 283 29396–29404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao M, Wang Y, Zhu Z, Yu J, Wan L and Chen J 2009 Influence of NS5A protein of classical swine fever virus (CSFV) on CSFV internal ribosome entry site-dependent translation. J. Gen. Virol. 90 2923–2928

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by China National Science Funds (No. 31172339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanming Zhang.

Additional information

Corresponding editor: Shahid Jameel

[Zhang C, He L, Kang K, Chen H, Xu L and Zhang Y 2014 Screening of cellular proteins that interact with the classical swine fever virus non-structural protein 5A by yeast two-hybrid analysis. J. Biosci. 39 1–12] DOI 10.1007/s12038-013-9411-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., He, L., Kang, K. et al. Screening of cellular proteins that interact with the classical swine fever virus non-structural protein 5A by yeast two-hybrid analysis. J Biosci 39, 63–74 (2014). https://doi.org/10.1007/s12038-013-9411-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9411-y

Keywords

Navigation